Metamath Proof Explorer


Theorem geo2lim

Description: The value of the infinite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... , multiplied by a constant. (Contributed by Mario Carneiro, 15-Jun-2014)

Ref Expression
Hypothesis geo2lim.1 𝐹 = ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) )
Assertion geo2lim ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ 𝐴 )

Proof

Step Hyp Ref Expression
1 geo2lim.1 𝐹 = ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) )
2 nnuz ℕ = ( ℤ ‘ 1 )
3 1zzd ( 𝐴 ∈ ℂ → 1 ∈ ℤ )
4 halfcn ( 1 / 2 ) ∈ ℂ
5 4 a1i ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℂ )
6 halfre ( 1 / 2 ) ∈ ℝ
7 halfge0 0 ≤ ( 1 / 2 )
8 absid ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) )
9 6 7 8 mp2an ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 )
10 halflt1 ( 1 / 2 ) < 1
11 9 10 eqbrtri ( abs ‘ ( 1 / 2 ) ) < 1
12 11 a1i ( 𝐴 ∈ ℂ → ( abs ‘ ( 1 / 2 ) ) < 1 )
13 5 12 expcnv ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ⇝ 0 )
14 id ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ )
15 nnex ℕ ∈ V
16 15 mptex ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) ∈ V
17 1 16 eqeltri 𝐹 ∈ V
18 17 a1i ( 𝐴 ∈ ℂ → 𝐹 ∈ V )
19 nnnn0 ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 )
20 19 adantl ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 )
21 oveq2 ( 𝑘 = 𝑗 → ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑗 ) )
22 eqid ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) )
23 ovex ( ( 1 / 2 ) ↑ 𝑗 ) ∈ V
24 21 22 23 fvmpt ( 𝑗 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) )
25 20 24 syl ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) )
26 2cn 2 ∈ ℂ
27 2ne0 2 ≠ 0
28 nnz ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ )
29 28 adantl ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ )
30 exprec ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) )
31 26 27 29 30 mp3an12i ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) )
32 25 31 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) )
33 2nn 2 ∈ ℕ
34 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ )
35 33 20 34 sylancr ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ )
36 35 nnrecred ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℝ )
37 36 recnd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℂ )
38 32 37 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ∈ ℂ )
39 simpl ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ ℂ )
40 35 nncnd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℂ )
41 35 nnne0d ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ≠ 0 )
42 39 40 41 divrecd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) )
43 oveq2 ( 𝑘 = 𝑗 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑗 ) )
44 43 oveq2d ( 𝑘 = 𝑗 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) )
45 ovex ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ V
46 44 1 45 fvmpt ( 𝑗 ∈ ℕ → ( 𝐹𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) )
47 46 adantl ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) )
48 32 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) )
49 42 47 48 3eqtr4d ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) )
50 2 3 13 14 18 38 49 climmulc2 ( 𝐴 ∈ ℂ → 𝐹 ⇝ ( 𝐴 · 0 ) )
51 mul01 ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 )
52 50 51 breqtrd ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 )
53 seqex seq 1 ( + , 𝐹 ) ∈ V
54 53 a1i ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ∈ V )
55 39 40 41 divcld ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ ℂ )
56 47 55 eqeltrd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ ℂ )
57 47 oveq2d ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 − ( 𝐹𝑗 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) )
58 geo2sum ( ( 𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) )
59 58 ancoms ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) )
60 elfznn ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ )
61 60 adantl ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ )
62 oveq2 ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) )
63 62 oveq2d ( 𝑘 = 𝑛 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) )
64 ovex ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ V
65 63 1 64 fvmpt ( 𝑛 ∈ ℕ → ( 𝐹𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) )
66 61 65 syl ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) )
67 simpr ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ )
68 67 2 eleqtrdi ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ ‘ 1 ) )
69 simpll ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ℂ )
70 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
71 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
72 33 70 71 sylancr ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ )
73 61 72 syl ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
74 73 nncnd ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ )
75 73 nnne0d ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ≠ 0 )
76 69 74 75 divcld ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℂ )
77 66 68 76 fsumser ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) )
78 57 59 77 3eqtr2rd ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐴 − ( 𝐹𝑗 ) ) )
79 2 3 52 14 54 56 78 climsubc2 ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ ( 𝐴 − 0 ) )
80 subid1 ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 )
81 79 80 breqtrd ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ 𝐴 )