| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geo2lim.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ  ↦  ( 𝐴  /  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 2 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 3 |  | 1zzd | ⊢ ( 𝐴  ∈  ℂ  →  1  ∈  ℤ ) | 
						
							| 4 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 6 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 7 |  | halfge0 | ⊢ 0  ≤  ( 1  /  2 ) | 
						
							| 8 |  | absid | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) )  →  ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) ) | 
						
							| 9 | 6 7 8 | mp2an | ⊢ ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 10 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 11 | 9 10 | eqbrtri | ⊢ ( abs ‘ ( 1  /  2 ) )  <  1 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ ( 1  /  2 ) )  <  1 ) | 
						
							| 13 | 5 12 | expcnv | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) )  ⇝  0 ) | 
						
							| 14 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 15 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 16 | 15 | mptex | ⊢ ( 𝑘  ∈  ℕ  ↦  ( 𝐴  /  ( 2 ↑ 𝑘 ) ) )  ∈  V | 
						
							| 17 | 1 16 | eqeltri | ⊢ 𝐹  ∈  V | 
						
							| 18 | 17 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ∈  V ) | 
						
							| 19 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ0 ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( ( 1  /  2 ) ↑ 𝑘 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) | 
						
							| 23 |  | ovex | ⊢ ( ( 1  /  2 ) ↑ 𝑗 )  ∈  V | 
						
							| 24 | 21 22 23 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 25 | 20 24 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 )  =  ( ( 1  /  2 ) ↑ 𝑗 ) ) | 
						
							| 26 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 27 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 28 |  | nnz | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℤ ) | 
						
							| 30 |  | exprec | ⊢ ( ( 2  ∈  ℂ  ∧  2  ≠  0  ∧  𝑗  ∈  ℤ )  →  ( ( 1  /  2 ) ↑ 𝑗 )  =  ( 1  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 31 | 26 27 29 30 | mp3an12i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( ( 1  /  2 ) ↑ 𝑗 )  =  ( 1  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 32 | 25 31 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 )  =  ( 1  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 33 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 34 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 2 ↑ 𝑗 )  ∈  ℕ ) | 
						
							| 35 | 33 20 34 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 2 ↑ 𝑗 )  ∈  ℕ ) | 
						
							| 36 | 35 | nnrecred | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑗 ) )  ∈  ℝ ) | 
						
							| 37 | 36 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 1  /  ( 2 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 38 | 32 37 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 40 | 35 | nncnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 2 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 41 | 35 | nnne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 2 ↑ 𝑗 )  ≠  0 ) | 
						
							| 42 | 39 40 41 | divrecd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐴  /  ( 2 ↑ 𝑗 ) )  =  ( 𝐴  ·  ( 1  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 2 ↑ 𝑘 )  =  ( 2 ↑ 𝑗 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐴  /  ( 2 ↑ 𝑘 ) )  =  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 45 |  | ovex | ⊢ ( 𝐴  /  ( 2 ↑ 𝑗 ) )  ∈  V | 
						
							| 46 | 44 1 45 | fvmpt | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) | 
						
							| 48 | 32 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐴  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) )  =  ( 𝐴  ·  ( 1  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 49 | 42 47 48 | 3eqtr4d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ( 𝐴  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( 1  /  2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) ) | 
						
							| 50 | 2 3 13 14 18 38 49 | climmulc2 | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ⇝  ( 𝐴  ·  0 ) ) | 
						
							| 51 |  | mul01 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 52 | 50 51 | breqtrd | ⊢ ( 𝐴  ∈  ℂ  →  𝐹  ⇝  0 ) | 
						
							| 53 |  | seqex | ⊢ seq 1 (  +  ,  𝐹 )  ∈  V | 
						
							| 54 | 53 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  seq 1 (  +  ,  𝐹 )  ∈  V ) | 
						
							| 55 | 39 40 41 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐴  /  ( 2 ↑ 𝑗 ) )  ∈  ℂ ) | 
						
							| 56 | 47 55 | eqeltrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 57 | 47 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( 𝐴  −  ( 𝐹 ‘ 𝑗 ) )  =  ( 𝐴  −  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 58 |  | geo2sum | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝐴  ∈  ℂ )  →  Σ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐴  /  ( 2 ↑ 𝑛 ) )  =  ( 𝐴  −  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 59 | 58 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  Σ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐴  /  ( 2 ↑ 𝑛 ) )  =  ( 𝐴  −  ( 𝐴  /  ( 2 ↑ 𝑗 ) ) ) ) | 
						
							| 60 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  →  𝑛  ∈  ℕ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 62 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 2 ↑ 𝑘 )  =  ( 2 ↑ 𝑛 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑘  =  𝑛  →  ( 𝐴  /  ( 2 ↑ 𝑘 ) )  =  ( 𝐴  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 64 |  | ovex | ⊢ ( 𝐴  /  ( 2 ↑ 𝑛 ) )  ∈  V | 
						
							| 65 | 63 1 64 | fvmpt | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐴  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 66 | 61 65 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐴  /  ( 2 ↑ 𝑛 ) ) ) | 
						
							| 67 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 68 | 67 2 | eleqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 69 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 70 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 71 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 72 | 33 70 71 | sylancr | ⊢ ( 𝑛  ∈  ℕ  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 73 | 61 72 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2 ↑ 𝑛 )  ∈  ℕ ) | 
						
							| 74 | 73 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 75 | 73 | nnne0d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 2 ↑ 𝑛 )  ≠  0 ) | 
						
							| 76 | 69 74 75 | divcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐴  /  ( 2 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 77 | 66 68 76 | fsumser | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  Σ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐴  /  ( 2 ↑ 𝑛 ) )  =  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 78 | 57 59 77 | 3eqtr2rd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐹 ) ‘ 𝑗 )  =  ( 𝐴  −  ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 79 | 2 3 52 14 54 56 78 | climsubc2 | ⊢ ( 𝐴  ∈  ℂ  →  seq 1 (  +  ,  𝐹 )  ⇝  ( 𝐴  −  0 ) ) | 
						
							| 80 |  | subid1 | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  0 )  =  𝐴 ) | 
						
							| 81 | 79 80 | breqtrd | ⊢ ( 𝐴  ∈  ℂ  →  seq 1 (  +  ,  𝐹 )  ⇝  𝐴 ) |