Step |
Hyp |
Ref |
Expression |
1 |
|
geo2lim.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) |
2 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
3 |
|
1zzd |
⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℤ ) |
4 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 1 / 2 ) ∈ ℂ ) |
6 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
7 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
8 |
|
absid |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
9 |
6 7 8
|
mp2an |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
10 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
11 |
9 10
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ ( 1 / 2 ) ) < 1 ) |
13 |
5 12
|
expcnv |
⊢ ( 𝐴 ∈ ℂ → ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ⇝ 0 ) |
14 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
15 |
|
nnex |
⊢ ℕ ∈ V |
16 |
15
|
mptex |
⊢ ( 𝑘 ∈ ℕ ↦ ( 𝐴 / ( 2 ↑ 𝑘 ) ) ) ∈ V |
17 |
1 16
|
eqeltri |
⊢ 𝐹 ∈ V |
18 |
17
|
a1i |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ V ) |
19 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ0 ) |
21 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
22 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) |
23 |
|
ovex |
⊢ ( ( 1 / 2 ) ↑ 𝑗 ) ∈ V |
24 |
21 22 23
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
25 |
20 24
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( ( 1 / 2 ) ↑ 𝑗 ) ) |
26 |
|
2cn |
⊢ 2 ∈ ℂ |
27 |
|
2ne0 |
⊢ 2 ≠ 0 |
28 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
29 |
28
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ ) |
30 |
|
exprec |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 𝑗 ∈ ℤ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
31 |
26 27 29 30
|
mp3an12i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 1 / 2 ) ↑ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
32 |
25 31
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) = ( 1 / ( 2 ↑ 𝑗 ) ) ) |
33 |
|
2nn |
⊢ 2 ∈ ℕ |
34 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
35 |
33 20 34
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℕ ) |
36 |
35
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℝ ) |
37 |
36
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 1 / ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
38 |
32 37
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ∈ ℂ ) |
39 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
40 |
35
|
nncnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ∈ ℂ ) |
41 |
35
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 2 ↑ 𝑗 ) ≠ 0 ) |
42 |
39 40 41
|
divrecd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
43 |
|
oveq2 |
⊢ ( 𝑘 = 𝑗 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑗 ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝑘 = 𝑗 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
45 |
|
ovex |
⊢ ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ V |
46 |
44 1 45
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) |
48 |
32
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) = ( 𝐴 · ( 1 / ( 2 ↑ 𝑗 ) ) ) ) |
49 |
42 47 48
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐴 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( 1 / 2 ) ↑ 𝑘 ) ) ‘ 𝑗 ) ) ) |
50 |
2 3 13 14 18 38 49
|
climmulc2 |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ⇝ ( 𝐴 · 0 ) ) |
51 |
|
mul01 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 0 ) = 0 ) |
52 |
50 51
|
breqtrd |
⊢ ( 𝐴 ∈ ℂ → 𝐹 ⇝ 0 ) |
53 |
|
seqex |
⊢ seq 1 ( + , 𝐹 ) ∈ V |
54 |
53
|
a1i |
⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ∈ V ) |
55 |
39 40 41
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 / ( 2 ↑ 𝑗 ) ) ∈ ℂ ) |
56 |
47 55
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
57 |
47
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( 𝐴 − ( 𝐹 ‘ 𝑗 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) |
58 |
|
geo2sum |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) |
59 |
58
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑗 ) ) ) ) |
60 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) → 𝑛 ∈ ℕ ) |
61 |
60
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝑛 ∈ ℕ ) |
62 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
64 |
|
ovex |
⊢ ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ V |
65 |
63 1 64
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ → ( 𝐹 ‘ 𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
66 |
61 65
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐴 / ( 2 ↑ 𝑛 ) ) ) |
67 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ ) |
68 |
67 2
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ≥ ‘ 1 ) ) |
69 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → 𝐴 ∈ ℂ ) |
70 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
71 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
72 |
33 70 71
|
sylancr |
⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
73 |
61 72
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
74 |
73
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
75 |
73
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
76 |
69 74 75
|
divcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐴 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
77 |
66 68 76
|
fsumser |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → Σ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐴 / ( 2 ↑ 𝑛 ) ) = ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) ) |
78 |
57 59 77
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , 𝐹 ) ‘ 𝑗 ) = ( 𝐴 − ( 𝐹 ‘ 𝑗 ) ) ) |
79 |
2 3 52 14 54 56 78
|
climsubc2 |
⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ ( 𝐴 − 0 ) ) |
80 |
|
subid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) |
81 |
79 80
|
breqtrd |
⊢ ( 𝐴 ∈ ℂ → seq 1 ( + , 𝐹 ) ⇝ 𝐴 ) |