| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1zzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℤ ) |
| 2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
| 4 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 5 |
|
2nn |
⊢ 2 ∈ ℕ |
| 6 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 8 |
7
|
nnnn0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 9 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 10 |
5 8 9
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 11 |
10
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 12 |
10
|
nnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 13 |
4 11 12
|
divcld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 / ( 2 ↑ 𝑘 ) ) ∈ ℂ ) |
| 14 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑘 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 16 |
1 1 3 13 15
|
fsumshftm |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 / ( 2 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 17 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 18 |
17
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 19 |
18
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 20 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 21 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 22 |
21
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 23 |
|
expcl |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
| 24 |
20 22 23
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
| 25 |
|
2cnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 2 ∈ ℂ ) |
| 26 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 27 |
26
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 2 ≠ 0 ) |
| 28 |
24 25 27
|
divrecd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) |
| 29 |
|
expp1 |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) |
| 30 |
20 22 29
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) |
| 31 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℤ ) |
| 32 |
31
|
peano2zd |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 33 |
32
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 34 |
25 27 33
|
exprecd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 35 |
28 30 34
|
3eqtr2rd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) |
| 36 |
35
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 · ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 𝐴 · ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) ) |
| 37 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 38 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 39 |
22 38
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 40 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 41 |
5 39 40
|
sylancr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 42 |
41
|
nncnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 43 |
41
|
nnne0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≠ 0 ) |
| 44 |
37 42 43
|
divrecd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( 𝐴 · ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 45 |
24 37 25 27
|
div12d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( 𝐴 · ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) ) |
| 46 |
36 44 45
|
3eqtr4d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 47 |
46
|
sumeq2dv |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 48 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
| 49 |
|
halfcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / 2 ) ∈ ℂ ) |
| 51 |
48 50 24
|
fsummulc1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 52 |
47 51
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 53 |
19 52
|
eqtrid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 54 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 2 ∈ ℂ ) |
| 55 |
26
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 2 ≠ 0 ) |
| 56 |
54 55 3
|
exprecd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 / 2 ) ↑ 𝑁 ) = ( 1 / ( 2 ↑ 𝑁 ) ) ) |
| 57 |
56
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) = ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ) |
| 58 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
| 59 |
58
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 60 |
57 59
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) ) |
| 61 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 62 |
61 54 55
|
divrec2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / 2 ) = ( ( 1 / 2 ) · 𝐴 ) ) |
| 63 |
60 62
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) = ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( ( 1 / 2 ) · 𝐴 ) ) ) |
| 64 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 65 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 67 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
| 68 |
5 66 67
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
| 69 |
68
|
nnrecred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℂ ) |
| 71 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℂ ) → ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 72 |
64 70 71
|
sylancr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 73 |
20
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ∈ ℂ ) |
| 74 |
|
0re |
⊢ 0 ∈ ℝ |
| 75 |
|
halfgt0 |
⊢ 0 < ( 1 / 2 ) |
| 76 |
74 75
|
gtneii |
⊢ ( 1 / 2 ) ≠ 0 |
| 77 |
76
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ≠ 0 ) |
| 78 |
72 73 77
|
divcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) ∈ ℂ ) |
| 79 |
78 73 61
|
mulassd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) · 𝐴 ) = ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( ( 1 / 2 ) · 𝐴 ) ) ) |
| 80 |
72 73 77
|
divcan1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) = ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ) |
| 81 |
80
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) · 𝐴 ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 82 |
63 79 81
|
3eqtr2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 83 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 84 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
| 85 |
83 84
|
ltneii |
⊢ ( 1 / 2 ) ≠ 1 |
| 86 |
85
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ≠ 1 ) |
| 87 |
73 86 66
|
geoser |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) = ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) ) |
| 88 |
87
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) ) |
| 89 |
|
mullid |
⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 91 |
90
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝐴 = ( 1 · 𝐴 ) ) |
| 92 |
68
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 93 |
68
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ≠ 0 ) |
| 94 |
61 92 93
|
divrec2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / ( 2 ↑ 𝑁 ) ) = ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) |
| 95 |
91 94
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) = ( ( 1 · 𝐴 ) − ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) ) |
| 96 |
64
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℂ ) |
| 97 |
96 70 61
|
subdird |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) = ( ( 1 · 𝐴 ) − ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) ) |
| 98 |
95 97
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 99 |
82 88 98
|
3eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) ) |
| 100 |
16 53 99
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) ) |