Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
2 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
4 |
3
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) ) |
5 |
|
2cn |
⊢ 2 ∈ ℂ |
6 |
5
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
7 |
|
1ne2 |
⊢ 1 ≠ 2 |
8 |
7
|
necomi |
⊢ 2 ≠ 1 |
9 |
8
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ≠ 1 ) |
10 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
11 |
6 9 10
|
geoser |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
12 |
6 10
|
expcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
13 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
14 |
13
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 1 ∈ ℂ ) |
15 |
12 14
|
subcld |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) |
16 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
17 |
16
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 1 ≠ 0 ) |
18 |
15 14 17
|
div2negd |
⊢ ( 𝑁 ∈ ℕ0 → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) ) |
19 |
12 14
|
negsubdi2d |
⊢ ( 𝑁 ∈ ℕ0 → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) |
20 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
21 |
20
|
negeqi |
⊢ - ( 2 − 1 ) = - 1 |
22 |
5 13
|
negsubdi2i |
⊢ - ( 2 − 1 ) = ( 1 − 2 ) |
23 |
21 22
|
eqtr3i |
⊢ - 1 = ( 1 − 2 ) |
24 |
23
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → - 1 = ( 1 − 2 ) ) |
25 |
19 24
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ0 → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
26 |
15
|
div1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
27 |
18 25 26
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
28 |
4 11 27
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |