| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 2 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( 0 ..^ 𝑁 )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( 0 ..^ 𝑁 )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 4 | 3 | sumeq1d | ⊢ ( 𝑁  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 2 ↑ 𝑘 ) ) | 
						
							| 5 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 7 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 8 | 7 | necomi | ⊢ 2  ≠  1 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ≠  1 ) | 
						
							| 10 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 | 6 9 10 | geoser | ⊢ ( 𝑁  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 2 ↑ 𝑘 )  =  ( ( 1  −  ( 2 ↑ 𝑁 ) )  /  ( 1  −  2 ) ) ) | 
						
							| 12 | 6 10 | expcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 13 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℂ ) | 
						
							| 15 | 12 14 | subcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℂ ) | 
						
							| 16 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  ≠  0 ) | 
						
							| 18 | 15 14 17 | div2negd | ⊢ ( 𝑁  ∈  ℕ0  →  ( - ( ( 2 ↑ 𝑁 )  −  1 )  /  - 1 )  =  ( ( ( 2 ↑ 𝑁 )  −  1 )  /  1 ) ) | 
						
							| 19 | 12 14 | negsubdi2d | ⊢ ( 𝑁  ∈  ℕ0  →  - ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 1  −  ( 2 ↑ 𝑁 ) ) ) | 
						
							| 20 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 21 | 20 | negeqi | ⊢ - ( 2  −  1 )  =  - 1 | 
						
							| 22 | 5 13 | negsubdi2i | ⊢ - ( 2  −  1 )  =  ( 1  −  2 ) | 
						
							| 23 | 21 22 | eqtr3i | ⊢ - 1  =  ( 1  −  2 ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  - 1  =  ( 1  −  2 ) ) | 
						
							| 25 | 19 24 | oveq12d | ⊢ ( 𝑁  ∈  ℕ0  →  ( - ( ( 2 ↑ 𝑁 )  −  1 )  /  - 1 )  =  ( ( 1  −  ( 2 ↑ 𝑁 ) )  /  ( 1  −  2 ) ) ) | 
						
							| 26 | 15 | div1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  /  1 )  =  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 27 | 18 25 26 | 3eqtr3d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 1  −  ( 2 ↑ 𝑁 ) )  /  ( 1  −  2 ) )  =  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 28 | 4 11 27 | 3eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  Σ 𝑘  ∈  ( 0 ..^ 𝑁 ) ( 2 ↑ 𝑘 )  =  ( ( 2 ↑ 𝑁 )  −  1 ) ) |