Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
⊢ 2 ∈ ℂ |
2 |
1
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
3 |
|
2ne0 |
⊢ 2 ≠ 0 |
4 |
3
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ≠ 0 ) |
5 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
6 |
2 4 5
|
exprecd |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 2 ) ↑ 𝑘 ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
7 |
6
|
sumeq2i |
⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) |
8 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
9 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
10 |
|
halfge0 |
⊢ 0 ≤ ( 1 / 2 ) |
11 |
|
absid |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ 0 ≤ ( 1 / 2 ) ) → ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) ) |
12 |
9 10 11
|
mp2an |
⊢ ( abs ‘ ( 1 / 2 ) ) = ( 1 / 2 ) |
13 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
14 |
12 13
|
eqbrtri |
⊢ ( abs ‘ ( 1 / 2 ) ) < 1 |
15 |
|
geoisum1 |
⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ ( abs ‘ ( 1 / 2 ) ) < 1 ) → Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) ) |
16 |
8 14 15
|
mp2an |
⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) |
17 |
|
1mhlfehlf |
⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) |
18 |
17
|
oveq2i |
⊢ ( ( 1 / 2 ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 1 / 2 ) / ( 1 / 2 ) ) |
19 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
20 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
21 |
19 1 20 3
|
divne0i |
⊢ ( 1 / 2 ) ≠ 0 |
22 |
8 21
|
dividi |
⊢ ( ( 1 / 2 ) / ( 1 / 2 ) ) = 1 |
23 |
16 18 22
|
3eqtri |
⊢ Σ 𝑘 ∈ ℕ ( ( 1 / 2 ) ↑ 𝑘 ) = 1 |
24 |
7 23
|
eqtr3i |
⊢ Σ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) = 1 |