Step |
Hyp |
Ref |
Expression |
1 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
2 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℤ ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
4 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) |
5 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑘 ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 𝐴 ∈ ℂ ) |
9 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
10 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
11 |
8 9 10
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) |
13 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
14 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 1 ∈ ℕ0 ) |
15 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
16 |
15 7
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
17 |
8 12 14 16
|
geolim2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) ) |
18 |
1 2 7 11 17
|
isumclim |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 ↑ 𝑘 ) = ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) ) |
19 |
|
exp1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) |
20 |
19
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
21 |
20
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( 𝐴 ↑ 1 ) / ( 1 − 𝐴 ) ) = ( 𝐴 / ( 1 − 𝐴 ) ) ) |
22 |
18 21
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 ↑ 𝑘 ) = ( 𝐴 / ( 1 − 𝐴 ) ) ) |