| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  𝑅  ∈  ℂ ) | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( 1  −  𝑅 )  ∈  ℂ ) | 
						
							| 5 | 3 2 4 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( 1  −  𝑅 )  ∈  ℂ ) | 
						
							| 6 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( abs ‘ 𝑅 )  <  1 ) | 
						
							| 7 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 8 | 7 | ltnri | ⊢ ¬  1  <  1 | 
						
							| 9 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 10 |  | fveq2 | ⊢ ( 1  =  𝑅  →  ( abs ‘ 1 )  =  ( abs ‘ 𝑅 ) ) | 
						
							| 11 | 9 10 | eqtr3id | ⊢ ( 1  =  𝑅  →  1  =  ( abs ‘ 𝑅 ) ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 1  =  𝑅  →  ( 1  <  1  ↔  ( abs ‘ 𝑅 )  <  1 ) ) | 
						
							| 13 | 8 12 | mtbii | ⊢ ( 1  =  𝑅  →  ¬  ( abs ‘ 𝑅 )  <  1 ) | 
						
							| 14 | 13 | necon2ai | ⊢ ( ( abs ‘ 𝑅 )  <  1  →  1  ≠  𝑅 ) | 
						
							| 15 | 6 14 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  1  ≠  𝑅 ) | 
						
							| 16 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ( 1  −  𝑅 )  =  0  ↔  1  =  𝑅 ) ) | 
						
							| 17 | 16 | necon3bid | ⊢ ( ( 1  ∈  ℂ  ∧  𝑅  ∈  ℂ )  →  ( ( 1  −  𝑅 )  ≠  0  ↔  1  ≠  𝑅 ) ) | 
						
							| 18 | 3 2 17 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( ( 1  −  𝑅 )  ≠  0  ↔  1  ≠  𝑅 ) ) | 
						
							| 19 | 15 18 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( 1  −  𝑅 )  ≠  0 ) | 
						
							| 20 | 1 2 5 19 | divassd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( ( 𝐴  ·  𝑅 )  /  ( 1  −  𝑅 ) )  =  ( 𝐴  ·  ( 𝑅  /  ( 1  −  𝑅 ) ) ) ) | 
						
							| 21 |  | geoisum1 | ⊢ ( ( 𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  Σ 𝑘  ∈  ℕ ( 𝑅 ↑ 𝑘 )  =  ( 𝑅  /  ( 1  −  𝑅 ) ) ) | 
						
							| 22 | 21 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  Σ 𝑘  ∈  ℕ ( 𝑅 ↑ 𝑘 )  =  ( 𝑅  /  ( 1  −  𝑅 ) ) ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( 𝐴  ·  Σ 𝑘  ∈  ℕ ( 𝑅 ↑ 𝑘 ) )  =  ( 𝐴  ·  ( 𝑅  /  ( 1  −  𝑅 ) ) ) ) | 
						
							| 24 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 25 |  | 1zzd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  1  ∈  ℤ ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑅 ↑ 𝑛 )  =  ( 𝑅 ↑ 𝑘 ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) | 
						
							| 28 |  | ovex | ⊢ ( 𝑅 ↑ 𝑘 )  ∈  V | 
						
							| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝑅 ↑ 𝑘 ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝑅 ↑ 𝑘 ) ) | 
						
							| 31 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 32 |  | expcl | ⊢ ( ( 𝑅  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑅 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 33 | 2 31 32 | syl2an | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑅 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 34 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  1  ∈  ℕ0 ) | 
						
							| 36 |  | elnnuz | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 37 | 36 30 | sylan2br | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 1 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝑅 ↑ 𝑘 ) ) | 
						
							| 38 | 2 6 35 37 | geolim2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) )  ⇝  ( ( 𝑅 ↑ 1 )  /  ( 1  −  𝑅 ) ) ) | 
						
							| 39 |  | seqex | ⊢ seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) )  ∈  V | 
						
							| 40 |  | ovex | ⊢ ( ( 𝑅 ↑ 1 )  /  ( 1  −  𝑅 ) )  ∈  V | 
						
							| 41 | 39 40 | breldm | ⊢ ( seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) )  ⇝  ( ( 𝑅 ↑ 1 )  /  ( 1  −  𝑅 ) )  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 42 | 38 41 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑅 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 43 | 24 25 30 33 42 1 | isummulc2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  ( 𝐴  ·  Σ 𝑘  ∈  ℕ ( 𝑅 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ℕ ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) ) ) | 
						
							| 44 | 20 23 43 | 3eqtr2rd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑅  ∈  ℂ  ∧  ( abs ‘ 𝑅 )  <  1 )  →  Σ 𝑘  ∈  ℕ ( 𝐴  ·  ( 𝑅 ↑ 𝑘 ) )  =  ( ( 𝐴  ·  𝑅 )  /  ( 1  −  𝑅 ) ) ) |