Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 𝐴 ∈ ℂ ) |
2 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 𝑅 ∈ ℂ ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 1 − 𝑅 ) ∈ ℂ ) |
5 |
3 2 4
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 1 − 𝑅 ) ∈ ℂ ) |
6 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( abs ‘ 𝑅 ) < 1 ) |
7 |
|
1re |
⊢ 1 ∈ ℝ |
8 |
7
|
ltnri |
⊢ ¬ 1 < 1 |
9 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
10 |
|
fveq2 |
⊢ ( 1 = 𝑅 → ( abs ‘ 1 ) = ( abs ‘ 𝑅 ) ) |
11 |
9 10
|
eqtr3id |
⊢ ( 1 = 𝑅 → 1 = ( abs ‘ 𝑅 ) ) |
12 |
11
|
breq1d |
⊢ ( 1 = 𝑅 → ( 1 < 1 ↔ ( abs ‘ 𝑅 ) < 1 ) ) |
13 |
8 12
|
mtbii |
⊢ ( 1 = 𝑅 → ¬ ( abs ‘ 𝑅 ) < 1 ) |
14 |
13
|
necon2ai |
⊢ ( ( abs ‘ 𝑅 ) < 1 → 1 ≠ 𝑅 ) |
15 |
6 14
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ≠ 𝑅 ) |
16 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 1 − 𝑅 ) = 0 ↔ 1 = 𝑅 ) ) |
17 |
16
|
necon3bid |
⊢ ( ( 1 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( ( 1 − 𝑅 ) ≠ 0 ↔ 1 ≠ 𝑅 ) ) |
18 |
3 2 17
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( ( 1 − 𝑅 ) ≠ 0 ↔ 1 ≠ 𝑅 ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 1 − 𝑅 ) ≠ 0 ) |
20 |
1 2 5 19
|
divassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( ( 𝐴 · 𝑅 ) / ( 1 − 𝑅 ) ) = ( 𝐴 · ( 𝑅 / ( 1 − 𝑅 ) ) ) ) |
21 |
|
geoisum1 |
⊢ ( ( 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) = ( 𝑅 / ( 1 − 𝑅 ) ) ) |
22 |
21
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) = ( 𝑅 / ( 1 − 𝑅 ) ) ) |
23 |
22
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) ) = ( 𝐴 · ( 𝑅 / ( 1 − 𝑅 ) ) ) ) |
24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
25 |
|
1zzd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ∈ ℤ ) |
26 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑅 ↑ 𝑛 ) = ( 𝑅 ↑ 𝑘 ) ) |
27 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) |
28 |
|
ovex |
⊢ ( 𝑅 ↑ 𝑘 ) ∈ V |
29 |
26 27 28
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
31 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
32 |
|
expcl |
⊢ ( ( 𝑅 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ↑ 𝑘 ) ∈ ℂ ) |
33 |
2 31 32
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑅 ↑ 𝑘 ) ∈ ℂ ) |
34 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
35 |
34
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → 1 ∈ ℕ0 ) |
36 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
37 |
36 30
|
sylan2br |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝑅 ↑ 𝑘 ) ) |
38 |
2 6 35 37
|
geolim2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ⇝ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) ) |
39 |
|
seqex |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ V |
40 |
|
ovex |
⊢ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) ∈ V |
41 |
39 40
|
breldm |
⊢ ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ⇝ ( ( 𝑅 ↑ 1 ) / ( 1 − 𝑅 ) ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
42 |
38 41
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( 𝑅 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
43 |
24 25 30 33 42 1
|
isummulc2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → ( 𝐴 · Σ 𝑘 ∈ ℕ ( 𝑅 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ℕ ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) ) |
44 |
20 23 43
|
3eqtr2rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ ( abs ‘ 𝑅 ) < 1 ) → Σ 𝑘 ∈ ℕ ( 𝐴 · ( 𝑅 ↑ 𝑘 ) ) = ( ( 𝐴 · 𝑅 ) / ( 1 − 𝑅 ) ) ) |