Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
2 |
|
0zd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 0 ∈ ℤ ) |
3 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( ( 1 / 𝐴 ) ↑ 𝑛 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
4 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) |
5 |
|
ovex |
⊢ ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
8 |
|
0le1 |
⊢ 0 ≤ 1 |
9 |
|
0re |
⊢ 0 ∈ ℝ |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
9 10
|
lenlti |
⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
12 |
8 11
|
mpbi |
⊢ ¬ 1 < 0 |
13 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
14 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
15 |
13 14
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
16 |
15
|
breq2d |
⊢ ( 𝐴 = 0 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 0 ) ) |
17 |
12 16
|
mtbiri |
⊢ ( 𝐴 = 0 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
18 |
17
|
necon2ai |
⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 0 ) |
19 |
|
reccl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ ℂ ) |
20 |
18 19
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → ( 1 / 𝐴 ) ∈ ℂ ) |
21 |
|
expcl |
⊢ ( ( ( 1 / 𝐴 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
22 |
20 21
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝐴 ) ↑ 𝑘 ) ∈ ℂ ) |
23 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
24 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → 1 < ( abs ‘ 𝐴 ) ) |
25 |
23 24 7
|
georeclim |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( 1 / 𝐴 ) ↑ 𝑛 ) ) ) ⇝ ( 𝐴 / ( 𝐴 − 1 ) ) ) |
26 |
1 2 7 22 25
|
isumclim |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 < ( abs ‘ 𝐴 ) ) → Σ 𝑘 ∈ ℕ0 ( ( 1 / 𝐴 ) ↑ 𝑘 ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |