| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 2 |  | 0zd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  0  ∈  ℤ ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( ( 1  /  𝐴 ) ↑ 𝑛 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑛 ) ) | 
						
							| 5 |  | ovex | ⊢ ( ( 1  /  𝐴 ) ↑ 𝑘 )  ∈  V | 
						
							| 6 | 3 4 5 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( ( 1  /  𝐴 ) ↑ 𝑘 ) ) | 
						
							| 8 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 9 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 10 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 11 | 9 10 | lenlti | ⊢ ( 0  ≤  1  ↔  ¬  1  <  0 ) | 
						
							| 12 | 8 11 | mpbi | ⊢ ¬  1  <  0 | 
						
							| 13 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 0 ) ) | 
						
							| 14 |  | abs0 | ⊢ ( abs ‘ 0 )  =  0 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( abs ‘ 𝐴 )  =  0 ) | 
						
							| 16 | 15 | breq2d | ⊢ ( 𝐴  =  0  →  ( 1  <  ( abs ‘ 𝐴 )  ↔  1  <  0 ) ) | 
						
							| 17 | 12 16 | mtbiri | ⊢ ( 𝐴  =  0  →  ¬  1  <  ( abs ‘ 𝐴 ) ) | 
						
							| 18 | 17 | necon2ai | ⊢ ( 1  <  ( abs ‘ 𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 19 |  | reccl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  ( 1  /  𝐴 )  ∈  ℂ ) | 
						
							| 21 |  | expcl | ⊢ ( ( ( 1  /  𝐴 )  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 22 | 20 21 | sylan | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  /  𝐴 ) ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 24 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  1  <  ( abs ‘ 𝐴 ) ) | 
						
							| 25 | 23 24 7 | georeclim | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( ( 1  /  𝐴 ) ↑ 𝑛 ) ) )  ⇝  ( 𝐴  /  ( 𝐴  −  1 ) ) ) | 
						
							| 26 | 1 2 7 22 25 | isumclim | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  <  ( abs ‘ 𝐴 ) )  →  Σ 𝑘  ∈  ℕ0 ( ( 1  /  𝐴 ) ↑ 𝑘 )  =  ( 𝐴  /  ( 𝐴  −  1 ) ) ) |