Step |
Hyp |
Ref |
Expression |
1 |
|
geolim.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
geolim.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
3 |
|
geolim.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
4 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
5 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
6 |
1 2
|
expcnv |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ⇝ 0 ) |
7 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
8 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
9 |
7 1 8
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
10 |
|
1re |
⊢ 1 ∈ ℝ |
11 |
10
|
ltnri |
⊢ ¬ 1 < 1 |
12 |
|
fveq2 |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) |
13 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
14 |
12 13
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
15 |
14
|
breq1d |
⊢ ( 𝐴 = 1 → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < 1 ) ) |
16 |
11 15
|
mtbiri |
⊢ ( 𝐴 = 1 → ¬ ( abs ‘ 𝐴 ) < 1 ) |
17 |
16
|
necon2ai |
⊢ ( ( abs ‘ 𝐴 ) < 1 → 𝐴 ≠ 1 ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
19 |
18
|
necomd |
⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
20 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
21 |
7 1 20
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
22 |
21
|
necon3bid |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
23 |
19 22
|
mpbird |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
24 |
1 9 23
|
divcld |
⊢ ( 𝜑 → ( 𝐴 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
25 |
|
nn0ex |
⊢ ℕ0 ∈ V |
26 |
25
|
mptex |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ∈ V |
27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ∈ V ) |
28 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑗 ) ) |
29 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) |
30 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑗 ) ∈ V |
31 |
28 29 30
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
33 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
34 |
1 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
35 |
32 34
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
36 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) ) |
37 |
1 36
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) ) |
38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
39 |
34 38
|
mulcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) · 𝐴 ) = ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) = ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) ) |
41 |
40
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) / ( 1 − 𝐴 ) ) ) |
42 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 − 𝐴 ) ∈ ℂ ) |
43 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 1 − 𝐴 ) ≠ 0 ) |
44 |
38 34 42 43
|
div23d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 · ( 𝐴 ↑ 𝑗 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
45 |
41 44
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
46 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 + 1 ) = ( 𝑗 + 1 ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ ( 𝑛 + 1 ) ) = ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) |
48 |
47
|
oveq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
49 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
50 |
|
ovex |
⊢ ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ∈ V |
51 |
48 49 50
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) |
53 |
32
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( 𝐴 ↑ 𝑗 ) ) ) |
54 |
45 52 53
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) = ( ( 𝐴 / ( 1 − 𝐴 ) ) · ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ) ) |
55 |
4 5 6 24 27 35 54
|
climmulc2 |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ⇝ ( ( 𝐴 / ( 1 − 𝐴 ) ) · 0 ) ) |
56 |
24
|
mul01d |
⊢ ( 𝜑 → ( ( 𝐴 / ( 1 − 𝐴 ) ) · 0 ) = 0 ) |
57 |
55 56
|
breqtrd |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ⇝ 0 ) |
58 |
9 23
|
reccld |
⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) ∈ ℂ ) |
59 |
|
seqex |
⊢ seq 0 ( + , 𝐹 ) ∈ V |
60 |
59
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ∈ V ) |
61 |
|
peano2nn0 |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) |
62 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
63 |
1 61 62
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
64 |
63 42 43
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ∈ ℂ ) |
65 |
52 64
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ∈ ℂ ) |
66 |
|
nn0cn |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℂ ) |
68 |
|
pncan |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
69 |
67 7 68
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
70 |
69
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) = ( 0 ... 𝑗 ) ) |
71 |
70
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑗 ) ( 𝐴 ↑ 𝑘 ) ) |
72 |
7
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 1 ∈ ℂ ) |
73 |
72 63 42 43
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 − ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) ) |
74 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝐴 ≠ 1 ) |
75 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
76 |
38 74 75
|
geoser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ ( 𝑗 + 1 ) ) ) / ( 1 − 𝐴 ) ) ) |
77 |
52
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝐴 ↑ ( 𝑗 + 1 ) ) / ( 1 − 𝐴 ) ) ) ) |
78 |
73 76 77
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( ( 𝑗 + 1 ) − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) ) |
79 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝜑 ) |
80 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑗 ) → 𝑘 ∈ ℕ0 ) |
81 |
80
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝑘 ∈ ℕ0 ) |
82 |
79 81 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ℕ0 ) |
84 |
83 4
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → 𝑗 ∈ ( ℤ≥ ‘ 0 ) ) |
85 |
79 1
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → 𝐴 ∈ ℂ ) |
86 |
85 81
|
expcld |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑗 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
87 |
82 84 86
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑗 ) ( 𝐴 ↑ 𝑘 ) = ( seq 0 ( + , 𝐹 ) ‘ 𝑗 ) ) |
88 |
71 78 87
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( seq 0 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ ( 𝑛 + 1 ) ) / ( 1 − 𝐴 ) ) ) ‘ 𝑗 ) ) ) |
89 |
4 5 57 58 60 65 88
|
climsubc2 |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( ( 1 / ( 1 − 𝐴 ) ) − 0 ) ) |
90 |
58
|
subid1d |
⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − 0 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
91 |
89 90
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |