Step |
Hyp |
Ref |
Expression |
1 |
|
geolim.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
2 |
|
geolim.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) < 1 ) |
3 |
|
geolim2.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
geolim2.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
6 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℂ ) |
8 |
|
eluznn0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
9 |
3 8
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ0 ) |
10 |
7 9
|
expcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑘 ) ) |
12 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) |
13 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑘 ) ∈ V |
14 |
11 12 13
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
15 |
9 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
16 |
15 4
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
17 |
6 16
|
seqfeq |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) = seq 𝑀 ( + , 𝐹 ) ) |
18 |
|
oveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐴 ↑ 𝑛 ) = ( 𝐴 ↑ 𝑗 ) ) |
19 |
|
ovex |
⊢ ( 𝐴 ↑ 𝑗 ) ∈ V |
20 |
18 12 19
|
fvmpt |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) = ( 𝐴 ↑ 𝑗 ) ) |
22 |
1 2 21
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) ) |
23 |
|
seqex |
⊢ seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ V |
24 |
|
ovex |
⊢ ( 1 / ( 1 − 𝐴 ) ) ∈ V |
25 |
23 24
|
breldm |
⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − 𝐴 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
26 |
22 25
|
syl |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
27 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
28 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
29 |
1 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
30 |
21 29
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 ) ∈ ℂ ) |
31 |
27 3 30
|
iserex |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ↔ seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) ) |
32 |
26 31
|
mpbid |
⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
33 |
17 32
|
eqeltrrd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
34 |
5 6 4 10 33
|
isumclim2 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) |
35 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 ) = ( 𝐴 ↑ 𝑘 ) ) |
36 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
37 |
1 36
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
38 |
27 5 3 35 37 26
|
isumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
39 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
40 |
27 39 35 37 22
|
isumclim |
⊢ ( 𝜑 → Σ 𝑘 ∈ ℕ0 ( 𝐴 ↑ 𝑘 ) = ( 1 / ( 1 − 𝐴 ) ) ) |
41 |
38 40
|
eqtr3d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) = ( 1 / ( 1 − 𝐴 ) ) ) |
42 |
|
1re |
⊢ 1 ∈ ℝ |
43 |
42
|
ltnri |
⊢ ¬ 1 < 1 |
44 |
|
fveq2 |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) |
45 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
46 |
44 45
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
47 |
46
|
breq1d |
⊢ ( 𝐴 = 1 → ( ( abs ‘ 𝐴 ) < 1 ↔ 1 < 1 ) ) |
48 |
43 47
|
mtbiri |
⊢ ( 𝐴 = 1 → ¬ ( abs ‘ 𝐴 ) < 1 ) |
49 |
48
|
necon2ai |
⊢ ( ( abs ‘ 𝐴 ) < 1 → 𝐴 ≠ 1 ) |
50 |
2 49
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
51 |
1 50 3
|
geoser |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) |
52 |
51
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝐴 ↑ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
53 |
41 52
|
eqtr3d |
⊢ ( 𝜑 → ( 1 / ( 1 − 𝐴 ) ) = ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) |
54 |
53
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = ( ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) ) |
55 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
56 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
57 |
1 3
|
expcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) |
58 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 𝑀 ) ) ∈ ℂ ) |
59 |
56 57 58
|
sylancr |
⊢ ( 𝜑 → ( 1 − ( 𝐴 ↑ 𝑀 ) ) ∈ ℂ ) |
60 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 − 𝐴 ) ∈ ℂ ) |
61 |
56 1 60
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ∈ ℂ ) |
62 |
50
|
necomd |
⊢ ( 𝜑 → 1 ≠ 𝐴 ) |
63 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
64 |
56 1 63
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) = 0 ↔ 1 = 𝐴 ) ) |
65 |
64
|
necon3bid |
⊢ ( 𝜑 → ( ( 1 − 𝐴 ) ≠ 0 ↔ 1 ≠ 𝐴 ) ) |
66 |
62 65
|
mpbird |
⊢ ( 𝜑 → ( 1 − 𝐴 ) ≠ 0 ) |
67 |
55 59 61 66
|
divsubdird |
⊢ ( 𝜑 → ( ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) ) |
68 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℂ ) → ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) = ( 𝐴 ↑ 𝑀 ) ) |
69 |
56 57 68
|
sylancr |
⊢ ( 𝜑 → ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) = ( 𝐴 ↑ 𝑀 ) ) |
70 |
69
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 − ( 1 − ( 𝐴 ↑ 𝑀 ) ) ) / ( 1 − 𝐴 ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
71 |
67 70
|
eqtr3d |
⊢ ( 𝜑 → ( ( 1 / ( 1 − 𝐴 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
72 |
59 61 66
|
divcld |
⊢ ( 𝜑 → ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ∈ ℂ ) |
73 |
5 6 15 10 32
|
isumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
74 |
72 73
|
pncan2d |
⊢ ( 𝜑 → ( ( ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) − ( ( 1 − ( 𝐴 ↑ 𝑀 ) ) / ( 1 − 𝐴 ) ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) |
75 |
54 71 74
|
3eqtr3rd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) = ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |
76 |
34 75
|
breqtrd |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ( 𝐴 ↑ 𝑀 ) / ( 1 − 𝐴 ) ) ) |