| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geolim.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | geolim.2 | ⊢ ( 𝜑  →  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 3 |  | geolim2.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | geolim2.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 5 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 6 | 3 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 7 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | eluznn0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 9 | 3 8 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 10 | 7 9 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) | 
						
							| 13 |  | ovex | ⊢ ( 𝐴 ↑ 𝑘 )  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 15 | 9 14 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 16 | 15 4 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 17 | 6 16 | seqfeq | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  =  seq 𝑀 (  +  ,  𝐹 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐴 ↑ 𝑛 )  =  ( 𝐴 ↑ 𝑗 ) ) | 
						
							| 19 |  | ovex | ⊢ ( 𝐴 ↑ 𝑗 )  ∈  V | 
						
							| 20 | 18 12 19 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐴 ↑ 𝑗 ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 )  =  ( 𝐴 ↑ 𝑗 ) ) | 
						
							| 22 | 1 2 21 | geolim | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  𝐴 ) ) ) | 
						
							| 23 |  | seqex | ⊢ seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  V | 
						
							| 24 |  | ovex | ⊢ ( 1  /  ( 1  −  𝐴 ) )  ∈  V | 
						
							| 25 | 23 24 | breldm | ⊢ ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ⇝  ( 1  /  ( 1  −  𝐴 ) )  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 26 | 22 25 | syl | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 27 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 28 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 29 | 1 28 | sylan | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 30 | 21 29 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 31 | 27 3 30 | iserex | ⊢ ( 𝜑  →  ( seq 0 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  dom   ⇝   ↔  seq 𝑀 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) ) | 
						
							| 32 | 26 31 | mpbid | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) )  ∈  dom   ⇝  ) | 
						
							| 33 | 17 32 | eqeltrrd | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 34 | 5 6 4 10 33 | isumclim2 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 35 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( 𝐴 ↑ 𝑛 ) ) ‘ 𝑘 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 36 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 37 | 1 36 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 38 | 27 5 3 35 37 26 | isumsplit | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 ( 𝐴 ↑ 𝑘 )  =  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝐴 ↑ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 39 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 40 | 27 39 35 37 22 | isumclim | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ℕ0 ( 𝐴 ↑ 𝑘 )  =  ( 1  /  ( 1  −  𝐴 ) ) ) | 
						
							| 41 | 38 40 | eqtr3d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝐴 ↑ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) )  =  ( 1  /  ( 1  −  𝐴 ) ) ) | 
						
							| 42 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 43 | 42 | ltnri | ⊢ ¬  1  <  1 | 
						
							| 44 |  | fveq2 | ⊢ ( 𝐴  =  1  →  ( abs ‘ 𝐴 )  =  ( abs ‘ 1 ) ) | 
						
							| 45 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 46 | 44 45 | eqtrdi | ⊢ ( 𝐴  =  1  →  ( abs ‘ 𝐴 )  =  1 ) | 
						
							| 47 | 46 | breq1d | ⊢ ( 𝐴  =  1  →  ( ( abs ‘ 𝐴 )  <  1  ↔  1  <  1 ) ) | 
						
							| 48 | 43 47 | mtbiri | ⊢ ( 𝐴  =  1  →  ¬  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 49 | 48 | necon2ai | ⊢ ( ( abs ‘ 𝐴 )  <  1  →  𝐴  ≠  1 ) | 
						
							| 50 | 2 49 | syl | ⊢ ( 𝜑  →  𝐴  ≠  1 ) | 
						
							| 51 | 1 50 3 | geoser | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝐴 ↑ 𝑘 )  =  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 52 | 51 | oveq1d | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝐴 ↑ 𝑘 )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) )  =  ( ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 53 | 41 52 | eqtr3d | ⊢ ( 𝜑  →  ( 1  /  ( 1  −  𝐴 ) )  =  ( ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 54 | 53 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  /  ( 1  −  𝐴 ) )  −  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) )  =  ( ( ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) )  −  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) ) ) | 
						
							| 55 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 56 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 57 | 1 3 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 58 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 𝑀 )  ∈  ℂ )  →  ( 1  −  ( 𝐴 ↑ 𝑀 ) )  ∈  ℂ ) | 
						
							| 59 | 56 57 58 | sylancr | ⊢ ( 𝜑  →  ( 1  −  ( 𝐴 ↑ 𝑀 ) )  ∈  ℂ ) | 
						
							| 60 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 61 | 56 1 60 | sylancr | ⊢ ( 𝜑  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 62 | 50 | necomd | ⊢ ( 𝜑  →  1  ≠  𝐴 ) | 
						
							| 63 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 64 | 56 1 63 | sylancr | ⊢ ( 𝜑  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 65 | 64 | necon3bid | ⊢ ( 𝜑  →  ( ( 1  −  𝐴 )  ≠  0  ↔  1  ≠  𝐴 ) ) | 
						
							| 66 | 62 65 | mpbird | ⊢ ( 𝜑  →  ( 1  −  𝐴 )  ≠  0 ) | 
						
							| 67 | 55 59 61 66 | divsubdird | ⊢ ( 𝜑  →  ( ( 1  −  ( 1  −  ( 𝐴 ↑ 𝑀 ) ) )  /  ( 1  −  𝐴 ) )  =  ( ( 1  /  ( 1  −  𝐴 ) )  −  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) ) ) | 
						
							| 68 |  | nncan | ⊢ ( ( 1  ∈  ℂ  ∧  ( 𝐴 ↑ 𝑀 )  ∈  ℂ )  →  ( 1  −  ( 1  −  ( 𝐴 ↑ 𝑀 ) ) )  =  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 69 | 56 57 68 | sylancr | ⊢ ( 𝜑  →  ( 1  −  ( 1  −  ( 𝐴 ↑ 𝑀 ) ) )  =  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 70 | 69 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  −  ( 1  −  ( 𝐴 ↑ 𝑀 ) ) )  /  ( 1  −  𝐴 ) )  =  ( ( 𝐴 ↑ 𝑀 )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 71 | 67 70 | eqtr3d | ⊢ ( 𝜑  →  ( ( 1  /  ( 1  −  𝐴 ) )  −  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) )  =  ( ( 𝐴 ↑ 𝑀 )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 72 | 59 61 66 | divcld | ⊢ ( 𝜑  →  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) )  ∈  ℂ ) | 
						
							| 73 | 5 6 15 10 32 | isumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 74 | 72 73 | pncan2d | ⊢ ( 𝜑  →  ( ( ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) )  +  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) )  −  ( ( 1  −  ( 𝐴 ↑ 𝑀 ) )  /  ( 1  −  𝐴 ) ) )  =  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 75 | 54 71 74 | 3eqtr3rd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ( 𝐴 ↑ 𝑘 )  =  ( ( 𝐴 ↑ 𝑀 )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 76 | 34 75 | breqtrd | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ⇝  ( ( 𝐴 ↑ 𝑀 )  /  ( 1  −  𝐴 ) ) ) |