| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geolim3.a | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 2 |  | geolim3.b1 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | geolim3.b2 | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  <  1 ) | 
						
							| 4 |  | geolim3.c | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | geolim3.f | ⊢ 𝐹  =  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) | 
						
							| 6 |  | seqeq3 | ⊢ ( 𝐹  =  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  →  seq 𝐴 (  +  ,  𝐹 )  =  seq 𝐴 (  +  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ seq 𝐴 (  +  ,  𝐹 )  =  seq 𝐴 (  +  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ) | 
						
							| 8 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 9 |  | 0zd | ⊢ ( 𝜑  →  0  ∈  ℤ ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑘  =  𝑎  →  ( 𝐵 ↑ 𝑘 )  =  ( 𝐵 ↑ 𝑎 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) | 
						
							| 12 |  | ovex | ⊢ ( 𝐵 ↑ 𝑎 )  ∈  V | 
						
							| 13 | 10 11 12 | fvmpt | ⊢ ( 𝑎  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 )  =  ( 𝐵 ↑ 𝑎 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 )  =  ( 𝐵 ↑ 𝑎 ) ) | 
						
							| 15 | 2 3 14 | geolim | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) )  ⇝  ( 1  /  ( 1  −  𝐵 ) ) ) | 
						
							| 16 |  | expcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 17 | 2 16 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐵 ↑ 𝑎 )  ∈  ℂ ) | 
						
							| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 )  ∈  ℂ ) | 
						
							| 19 | 1 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 20 |  | nn0cn | ⊢ ( 𝑎  ∈  ℕ0  →  𝑎  ∈  ℂ ) | 
						
							| 21 |  | fvex | ⊢ ( ℤ≥ ‘ 𝐴 )  ∈  V | 
						
							| 22 | 21 | mptex | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  ∈  V | 
						
							| 23 | 22 | shftval4 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑎  ∈  ℂ )  →  ( ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) ‘ 𝑎 )  =  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ‘ ( 𝐴  +  𝑎 ) ) ) | 
						
							| 24 | 19 20 23 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) ‘ 𝑎 )  =  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ‘ ( 𝐴  +  𝑎 ) ) ) | 
						
							| 25 |  | uzid | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 26 | 1 25 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 27 |  | uzaddcl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 𝐴 )  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  +  𝑎 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐴  +  𝑎 )  ∈  ( ℤ≥ ‘ 𝐴 ) ) | 
						
							| 29 |  | oveq1 | ⊢ ( 𝑘  =  ( 𝐴  +  𝑎 )  →  ( 𝑘  −  𝐴 )  =  ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑘  =  ( 𝐴  +  𝑎 )  →  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) )  =  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑘  =  ( 𝐴  +  𝑎 )  →  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) )  =  ( 𝐶  ·  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  =  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) | 
						
							| 33 |  | ovex | ⊢ ( 𝐶  ·  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) )  ∈  V | 
						
							| 34 | 31 32 33 | fvmpt | ⊢ ( ( 𝐴  +  𝑎 )  ∈  ( ℤ≥ ‘ 𝐴 )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ‘ ( 𝐴  +  𝑎 ) )  =  ( 𝐶  ·  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) ) ) | 
						
							| 35 | 28 34 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) ‘ ( 𝐴  +  𝑎 ) )  =  ( 𝐶  ·  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) ) ) | 
						
							| 36 |  | pncan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑎  ∈  ℂ )  →  ( ( 𝐴  +  𝑎 )  −  𝐴 )  =  𝑎 ) | 
						
							| 37 | 19 20 36 | syl2an | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( 𝐴  +  𝑎 )  −  𝐴 )  =  𝑎 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) )  =  ( 𝐵 ↑ 𝑎 ) ) | 
						
							| 39 | 38 14 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( 𝐶  ·  ( 𝐵 ↑ ( ( 𝐴  +  𝑎 )  −  𝐴 ) ) )  =  ( 𝐶  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) ) | 
						
							| 41 | 24 35 40 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ℕ0 )  →  ( ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) ‘ 𝑎 )  =  ( 𝐶  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) ) | 
						
							| 42 | 8 9 4 15 18 41 | isermulc2 | ⊢ ( 𝜑  →  seq 0 (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) )  ⇝  ( 𝐶  ·  ( 1  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 43 | 19 | negidd | ⊢ ( 𝜑  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 44 | 43 | seqeq1d | ⊢ ( 𝜑  →  seq ( 𝐴  +  - 𝐴 ) (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) )  =  seq 0 (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) ) ) | 
						
							| 45 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 46 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 1  −  𝐵 )  ∈  ℂ ) | 
						
							| 47 | 45 2 46 | sylancr | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ∈  ℂ ) | 
						
							| 48 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  ( abs ‘ 1 )  =  1 ) | 
						
							| 50 | 2 | abscld | ⊢ ( 𝜑  →  ( abs ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 51 | 50 3 | gtned | ⊢ ( 𝜑  →  1  ≠  ( abs ‘ 𝐵 ) ) | 
						
							| 52 | 49 51 | eqnetrd | ⊢ ( 𝜑  →  ( abs ‘ 1 )  ≠  ( abs ‘ 𝐵 ) ) | 
						
							| 53 |  | fveq2 | ⊢ ( 1  =  𝐵  →  ( abs ‘ 1 )  =  ( abs ‘ 𝐵 ) ) | 
						
							| 54 | 53 | necon3i | ⊢ ( ( abs ‘ 1 )  ≠  ( abs ‘ 𝐵 )  →  1  ≠  𝐵 ) | 
						
							| 55 | 52 54 | syl | ⊢ ( 𝜑  →  1  ≠  𝐵 ) | 
						
							| 56 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 1  −  𝐵 )  =  0  ↔  1  =  𝐵 ) ) | 
						
							| 57 | 45 2 56 | sylancr | ⊢ ( 𝜑  →  ( ( 1  −  𝐵 )  =  0  ↔  1  =  𝐵 ) ) | 
						
							| 58 | 57 | necon3bid | ⊢ ( 𝜑  →  ( ( 1  −  𝐵 )  ≠  0  ↔  1  ≠  𝐵 ) ) | 
						
							| 59 | 55 58 | mpbird | ⊢ ( 𝜑  →  ( 1  −  𝐵 )  ≠  0 ) | 
						
							| 60 | 4 47 59 | divrecd | ⊢ ( 𝜑  →  ( 𝐶  /  ( 1  −  𝐵 ) )  =  ( 𝐶  ·  ( 1  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 61 | 42 44 60 | 3brtr4d | ⊢ ( 𝜑  →  seq ( 𝐴  +  - 𝐴 ) (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) ) ) | 
						
							| 62 | 1 | znegcld | ⊢ ( 𝜑  →  - 𝐴  ∈  ℤ ) | 
						
							| 63 | 22 | isershft | ⊢ ( ( 𝐴  ∈  ℤ  ∧  - 𝐴  ∈  ℤ )  →  ( seq 𝐴 (  +  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) )  ↔  seq ( 𝐴  +  - 𝐴 ) (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 64 | 1 62 63 | syl2anc | ⊢ ( 𝜑  →  ( seq 𝐴 (  +  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) )  ↔  seq ( 𝐴  +  - 𝐴 ) (  +  ,  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) )  shift  - 𝐴 ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) ) ) ) | 
						
							| 65 | 61 64 | mpbird | ⊢ ( 𝜑  →  seq 𝐴 (  +  ,  ( 𝑘  ∈  ( ℤ≥ ‘ 𝐴 )  ↦  ( 𝐶  ·  ( 𝐵 ↑ ( 𝑘  −  𝐴 ) ) ) ) )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) ) ) | 
						
							| 66 | 7 65 | eqbrtrid | ⊢ ( 𝜑  →  seq 𝐴 (  +  ,  𝐹 )  ⇝  ( 𝐶  /  ( 1  −  𝐵 ) ) ) |