Step |
Hyp |
Ref |
Expression |
1 |
|
geolim3.a |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
2 |
|
geolim3.b1 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
3 |
|
geolim3.b2 |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < 1 ) |
4 |
|
geolim3.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
geolim3.f |
⊢ 𝐹 = ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) |
6 |
|
seqeq3 |
⊢ ( 𝐹 = ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) → seq 𝐴 ( + , 𝐹 ) = seq 𝐴 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ) ) |
7 |
5 6
|
ax-mp |
⊢ seq 𝐴 ( + , 𝐹 ) = seq 𝐴 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ) |
8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
9 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
10 |
|
oveq2 |
⊢ ( 𝑘 = 𝑎 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝑎 ) ) |
11 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) |
12 |
|
ovex |
⊢ ( 𝐵 ↑ 𝑎 ) ∈ V |
13 |
10 11 12
|
fvmpt |
⊢ ( 𝑎 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) = ( 𝐵 ↑ 𝑎 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) = ( 𝐵 ↑ 𝑎 ) ) |
15 |
2 3 14
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ) ⇝ ( 1 / ( 1 − 𝐵 ) ) ) |
16 |
|
expcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑎 ) ∈ ℂ ) |
17 |
2 16
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑎 ) ∈ ℂ ) |
18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ∈ ℂ ) |
19 |
1
|
zcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
20 |
|
nn0cn |
⊢ ( 𝑎 ∈ ℕ0 → 𝑎 ∈ ℂ ) |
21 |
|
fvex |
⊢ ( ℤ≥ ‘ 𝐴 ) ∈ V |
22 |
21
|
mptex |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ∈ V |
23 |
22
|
shftval4 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ‘ 𝑎 ) = ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ‘ ( 𝐴 + 𝑎 ) ) ) |
24 |
19 20 23
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ‘ 𝑎 ) = ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ‘ ( 𝐴 + 𝑎 ) ) ) |
25 |
|
uzid |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
26 |
1 25
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) |
27 |
|
uzaddcl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 + 𝑎 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
28 |
26 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝐴 + 𝑎 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐴 + 𝑎 ) → ( 𝑘 − 𝐴 ) = ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑘 = ( 𝐴 + 𝑎 ) → ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) = ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑘 = ( 𝐴 + 𝑎 ) → ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) = ( 𝐶 · ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) ) |
32 |
|
eqid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) = ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) |
33 |
|
ovex |
⊢ ( 𝐶 · ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) ∈ V |
34 |
31 32 33
|
fvmpt |
⊢ ( ( 𝐴 + 𝑎 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ‘ ( 𝐴 + 𝑎 ) ) = ( 𝐶 · ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) ) |
35 |
28 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ‘ ( 𝐴 + 𝑎 ) ) = ( 𝐶 · ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) ) |
36 |
|
pncan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ ) → ( ( 𝐴 + 𝑎 ) − 𝐴 ) = 𝑎 ) |
37 |
19 20 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( 𝐴 + 𝑎 ) − 𝐴 ) = 𝑎 ) |
38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) = ( 𝐵 ↑ 𝑎 ) ) |
39 |
38 14
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) = ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( 𝐶 · ( 𝐵 ↑ ( ( 𝐴 + 𝑎 ) − 𝐴 ) ) ) = ( 𝐶 · ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) ) |
41 |
24 35 40
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ‘ 𝑎 ) = ( 𝐶 · ( ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ↑ 𝑘 ) ) ‘ 𝑎 ) ) ) |
42 |
8 9 4 15 18 41
|
isermulc2 |
⊢ ( 𝜑 → seq 0 ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) ⇝ ( 𝐶 · ( 1 / ( 1 − 𝐵 ) ) ) ) |
43 |
19
|
negidd |
⊢ ( 𝜑 → ( 𝐴 + - 𝐴 ) = 0 ) |
44 |
43
|
seqeq1d |
⊢ ( 𝜑 → seq ( 𝐴 + - 𝐴 ) ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) = seq 0 ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) ) |
45 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
46 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 1 − 𝐵 ) ∈ ℂ ) |
47 |
45 2 46
|
sylancr |
⊢ ( 𝜑 → ( 1 − 𝐵 ) ∈ ℂ ) |
48 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
49 |
48
|
a1i |
⊢ ( 𝜑 → ( abs ‘ 1 ) = 1 ) |
50 |
2
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) ∈ ℝ ) |
51 |
50 3
|
gtned |
⊢ ( 𝜑 → 1 ≠ ( abs ‘ 𝐵 ) ) |
52 |
49 51
|
eqnetrd |
⊢ ( 𝜑 → ( abs ‘ 1 ) ≠ ( abs ‘ 𝐵 ) ) |
53 |
|
fveq2 |
⊢ ( 1 = 𝐵 → ( abs ‘ 1 ) = ( abs ‘ 𝐵 ) ) |
54 |
53
|
necon3i |
⊢ ( ( abs ‘ 1 ) ≠ ( abs ‘ 𝐵 ) → 1 ≠ 𝐵 ) |
55 |
52 54
|
syl |
⊢ ( 𝜑 → 1 ≠ 𝐵 ) |
56 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 1 − 𝐵 ) = 0 ↔ 1 = 𝐵 ) ) |
57 |
45 2 56
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − 𝐵 ) = 0 ↔ 1 = 𝐵 ) ) |
58 |
57
|
necon3bid |
⊢ ( 𝜑 → ( ( 1 − 𝐵 ) ≠ 0 ↔ 1 ≠ 𝐵 ) ) |
59 |
55 58
|
mpbird |
⊢ ( 𝜑 → ( 1 − 𝐵 ) ≠ 0 ) |
60 |
4 47 59
|
divrecd |
⊢ ( 𝜑 → ( 𝐶 / ( 1 − 𝐵 ) ) = ( 𝐶 · ( 1 / ( 1 − 𝐵 ) ) ) ) |
61 |
42 44 60
|
3brtr4d |
⊢ ( 𝜑 → seq ( 𝐴 + - 𝐴 ) ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ) |
62 |
1
|
znegcld |
⊢ ( 𝜑 → - 𝐴 ∈ ℤ ) |
63 |
22
|
isershft |
⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐴 ∈ ℤ ) → ( seq 𝐴 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ↔ seq ( 𝐴 + - 𝐴 ) ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ) ) |
64 |
1 62 63
|
syl2anc |
⊢ ( 𝜑 → ( seq 𝐴 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ↔ seq ( 𝐴 + - 𝐴 ) ( + , ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) shift - 𝐴 ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ) ) |
65 |
61 64
|
mpbird |
⊢ ( 𝜑 → seq 𝐴 ( + , ( 𝑘 ∈ ( ℤ≥ ‘ 𝐴 ) ↦ ( 𝐶 · ( 𝐵 ↑ ( 𝑘 − 𝐴 ) ) ) ) ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ) |
66 |
7 65
|
eqbrtrid |
⊢ ( 𝜑 → seq 𝐴 ( + , 𝐹 ) ⇝ ( 𝐶 / ( 1 − 𝐵 ) ) ) |