| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geomulcvg.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 2 |  | elnn0 | ⊢ ( 𝑘  ∈  ℕ0  ↔  ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  ( 𝐴 ↑ 𝑘 )  =  ( 0 ↑ 𝑘 ) ) | 
						
							| 5 |  | 0exp | ⊢ ( 𝑘  ∈  ℕ  →  ( 0 ↑ 𝑘 )  =  0 ) | 
						
							| 6 | 4 5 | sylan9eq | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴 ↑ 𝑘 )  =  0 ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( 𝑘  ·  0 ) ) | 
						
							| 8 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 10 | 9 | mul01d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  0 )  =  0 ) | 
						
							| 11 | 7 10 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  0 ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  𝑘  =  0 ) | 
						
							| 13 | 12 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝐴 ↑ 𝑘 ) ) ) | 
						
							| 14 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 15 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 16 | 12 15 | eqeltrdi | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | expcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 18 | 17 | mul02d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  ( 0  ·  ( 𝐴 ↑ 𝑘 ) )  =  0 ) | 
						
							| 19 | 13 18 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  =  0 )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  0 ) | 
						
							| 20 | 11 19 | jaodan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 ) )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  0 ) | 
						
							| 21 | 2 20 | sylan2b | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  0 ) | 
						
							| 22 | 21 | mpteq2dva | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  0 ) ) | 
						
							| 23 | 1 22 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  𝐹  =  ( 𝑘  ∈  ℕ0  ↦  0 ) ) | 
						
							| 24 |  | fconstmpt | ⊢ ( ℕ0  ×  { 0 } )  =  ( 𝑘  ∈  ℕ0  ↦  0 ) | 
						
							| 25 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 26 | 25 | xpeq1i | ⊢ ( ℕ0  ×  { 0 } )  =  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) | 
						
							| 27 | 24 26 | eqtr3i | ⊢ ( 𝑘  ∈  ℕ0  ↦  0 )  =  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) | 
						
							| 28 | 23 27 | eqtrdi | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  𝐹  =  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) ) | 
						
							| 29 | 28 | seqeq3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  seq 0 (  +  ,  𝐹 )  =  seq 0 (  +  ,  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) ) ) | 
						
							| 30 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 31 |  | serclim0 | ⊢ ( 0  ∈  ℤ  →  seq 0 (  +  ,  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) )  ⇝  0 ) | 
						
							| 32 | 30 31 | ax-mp | ⊢ seq 0 (  +  ,  ( ( ℤ≥ ‘ 0 )  ×  { 0 } ) )  ⇝  0 | 
						
							| 33 | 29 32 | eqbrtrdi | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  seq 0 (  +  ,  𝐹 )  ⇝  0 ) | 
						
							| 34 |  | seqex | ⊢ seq 0 (  +  ,  𝐹 )  ∈  V | 
						
							| 35 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 36 | 34 35 | breldm | ⊢ ( seq 0 (  +  ,  𝐹 )  ⇝  0  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 37 | 33 36 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  =  0 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 38 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  1  ∈  ℝ ) | 
						
							| 39 |  | abscl | ⊢ ( 𝐴  ∈  ℂ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 41 |  | peano2re | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℝ  →  ( ( abs ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( abs ‘ 𝐴 )  +  1 )  ∈  ℝ ) | 
						
							| 43 | 42 | rehalfcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℝ ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℝ ) | 
						
							| 45 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 46 | 45 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 47 | 44 46 | rerpdivcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) )  ∈  ℝ ) | 
						
							| 48 | 40 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 49 | 48 | mullidd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( 1  ·  ( abs ‘ 𝐴 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ 𝐴 )  <  1 ) | 
						
							| 51 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 52 |  | avglt1 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝐴 )  <  1  ↔  ( abs ‘ 𝐴 )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) ) | 
						
							| 53 | 40 51 52 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( abs ‘ 𝐴 )  <  1  ↔  ( abs ‘ 𝐴 )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) ) | 
						
							| 54 | 50 53 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ 𝐴 )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 55 | 49 54 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( 1  ·  ( abs ‘ 𝐴 ) )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( 1  ·  ( abs ‘ 𝐴 ) )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 57 | 38 44 46 | ltmuldivd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( ( 1  ·  ( abs ‘ 𝐴 ) )  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ↔  1  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ) ) | 
						
							| 58 | 56 57 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  1  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 59 |  | expmulnbnd | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) )  ∈  ℝ  ∧  1  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) )  →  ∃ 𝑛  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | 
						
							| 60 | 38 47 58 59 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ∃ 𝑛  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) | 
						
							| 61 |  | eluznn0 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 62 |  | nn0cn | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℂ ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℂ ) | 
						
							| 64 | 63 | mullidd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( 1  ·  𝑘 )  =  𝑘 ) | 
						
							| 65 | 43 | recnd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℂ ) | 
						
							| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℂ ) | 
						
							| 67 | 48 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 68 | 46 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 69 | 68 | rpne0d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 71 | 66 67 69 70 | expdivd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  =  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) | 
						
							| 72 | 64 71 | breq12d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ↔  𝑘  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) | 
						
							| 73 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 75 |  | reexpcl | ⊢ ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 76 | 44 75 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 77 | 40 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 78 |  | reexpcl | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 79 | 77 78 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  ℝ ) | 
						
							| 80 | 77 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 81 |  | nn0z | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℤ ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℤ ) | 
						
							| 83 | 68 | rpgt0d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( abs ‘ 𝐴 ) ) | 
						
							| 84 |  | expgt0 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  𝑘  ∈  ℤ  ∧  0  <  ( abs ‘ 𝐴 ) )  →  0  <  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 85 | 80 82 83 84 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) | 
						
							| 86 |  | ltmuldiv | ⊢ ( ( 𝑘  ∈  ℝ  ∧  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ∈  ℝ  ∧  ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  ∈  ℝ  ∧  0  <  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) )  →  ( ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ↔  𝑘  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) | 
						
							| 87 | 74 76 79 85 86 | syl112anc | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ↔  𝑘  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  /  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) | 
						
							| 88 | 72 87 | bitr4d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ↔  ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 89 | 61 88 | sylan2 | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  →  ( ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ↔  ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 90 | 89 | anassrs | ⊢ ( ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑛  ∈  ℕ0 )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ↔  ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 91 | 90 | ralbidva | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  ↔  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ) | 
						
							| 92 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 93 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 94 |  | eqid | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) | 
						
							| 95 |  | ovex | ⊢ ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 )  ∈  V | 
						
							| 96 | 93 94 95 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 97 | 96 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 98 | 43 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  ∈  ℝ ) | 
						
							| 99 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℕ0 ) | 
						
							| 100 | 98 99 | reexpcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 101 | 97 100 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 102 |  | id | ⊢ ( 𝑘  =  𝑚  →  𝑘  =  𝑚 ) | 
						
							| 103 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐴 ↑ 𝑘 )  =  ( 𝐴 ↑ 𝑚 ) ) | 
						
							| 104 | 102 103 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  ·  ( 𝐴 ↑ 𝑘 ) )  =  ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) ) | 
						
							| 105 |  | ovex | ⊢ ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) )  ∈  V | 
						
							| 106 | 104 1 105 | fvmpt | ⊢ ( 𝑚  ∈  ℕ0  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) ) | 
						
							| 107 | 106 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) ) | 
						
							| 108 |  | nn0cn | ⊢ ( 𝑚  ∈  ℕ0  →  𝑚  ∈  ℂ ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  𝑚  ∈  ℂ ) | 
						
							| 110 |  | expcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 111 | 110 | ad4ant14 | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 112 | 109 111 | mulcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) )  ∈  ℂ ) | 
						
							| 113 | 107 112 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 114 |  | 0red | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  0  ∈  ℝ ) | 
						
							| 115 |  | absge0 | ⊢ ( 𝐴  ∈  ℂ  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 116 | 115 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 117 | 114 40 43 116 54 | lelttrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  0  <  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 118 | 114 43 117 | ltled | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  0  ≤  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 119 | 43 118 | absidd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) )  =  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) | 
						
							| 120 |  | avglt2 | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( abs ‘ 𝐴 )  <  1  ↔  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  <  1 ) ) | 
						
							| 121 | 40 51 120 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( abs ‘ 𝐴 )  <  1  ↔  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  <  1 ) ) | 
						
							| 122 | 50 121 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  <  1 ) | 
						
							| 123 | 119 122 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  ( abs ‘ ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) )  <  1 ) | 
						
							| 124 |  | oveq2 | ⊢ ( 𝑘  =  𝑛  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑛 ) ) | 
						
							| 125 |  | ovex | ⊢ ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑛 )  ∈  V | 
						
							| 126 | 124 94 125 | fvmpt | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑛 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑛 ) ) | 
						
							| 127 | 126 | adantl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑛 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑛 ) ) | 
						
							| 128 | 65 123 127 | geolim | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ⇝  ( 1  /  ( 1  −  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) ) ) | 
						
							| 129 |  | seqex | ⊢ seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∈  V | 
						
							| 130 |  | ovex | ⊢ ( 1  /  ( 1  −  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) )  ∈  V | 
						
							| 131 | 129 130 | breldm | ⊢ ( seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ⇝  ( 1  /  ( 1  −  ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∈  dom   ⇝  ) | 
						
							| 132 | 128 131 | syl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∈  dom   ⇝  ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  →  seq 0 (  +  ,  ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∈  dom   ⇝  ) | 
						
							| 134 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  →  1  ∈  ℝ ) | 
						
							| 135 |  | eluznn0 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 136 | 92 135 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 137 | 136 | nn0red | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ℝ ) | 
						
							| 138 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 139 | 138 | abscld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 140 | 139 136 | reexpcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( abs ‘ 𝐴 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 141 | 137 140 | remulcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) )  ∈  ℝ ) | 
						
							| 142 | 136 100 | syldan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 )  ∈  ℝ ) | 
						
							| 143 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) | 
						
							| 144 |  | oveq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( abs ‘ 𝐴 ) ↑ 𝑘 )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) | 
						
							| 145 | 102 144 | oveq12d | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  =  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) | 
						
							| 146 | 145 93 | breq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ↔  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) ) | 
						
							| 147 | 146 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 148 | 143 147 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 149 | 141 142 148 | ltled | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) )  ≤  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 150 | 136 | nn0cnd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 151 | 138 136 | expcld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐴 ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 152 | 150 151 | absmuld | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) )  =  ( ( abs ‘ 𝑚 )  ·  ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) ) ) | 
						
							| 153 | 136 | nn0ge0d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  0  ≤  𝑚 ) | 
						
							| 154 | 137 153 | absidd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ 𝑚 )  =  𝑚 ) | 
						
							| 155 | 138 136 | absexpd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝐴 ↑ 𝑚 ) )  =  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) | 
						
							| 156 | 154 155 | oveq12d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( abs ‘ 𝑚 )  ·  ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) )  =  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) | 
						
							| 157 | 152 156 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) )  =  ( 𝑚  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) | 
						
							| 158 | 142 | recnd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 )  ∈  ℂ ) | 
						
							| 159 | 158 | mullidd | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 1  ·  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 160 | 149 157 159 | 3brtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) )  ≤  ( 1  ·  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) ) | 
						
							| 161 | 136 106 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) ) | 
						
							| 162 | 161 | fveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑚 ) )  =  ( abs ‘ ( 𝑚  ·  ( 𝐴 ↑ 𝑚 ) ) ) ) | 
						
							| 163 | 136 96 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 )  =  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) | 
						
							| 164 | 163 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 1  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) )  =  ( 1  ·  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑚 ) ) ) | 
						
							| 165 | 160 162 164 | 3brtr4d | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( abs ‘ ( 𝐹 ‘ 𝑚 ) )  ≤  ( 1  ·  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ) ) | 
						
							| 166 | 25 92 101 113 133 134 165 | cvgcmpce | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 ) ) )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 167 | 166 | expr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 168 | 167 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 𝑘  ·  ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) )  <  ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 ) ↑ 𝑘 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 169 | 91 168 | sylbid | ⊢ ( ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  ∧  𝑛  ∈  ℕ0 )  →  ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 170 | 169 | rexlimdva | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  ( ∃ 𝑛  ∈  ℕ0 ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑛 ) ( 1  ·  𝑘 )  <  ( ( ( ( ( abs ‘ 𝐴 )  +  1 )  /  2 )  /  ( abs ‘ 𝐴 ) ) ↑ 𝑘 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) ) | 
						
							| 171 | 60 170 | mpd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  ∧  𝐴  ≠  0 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 172 | 37 171 | pm2.61dane | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( abs ‘ 𝐴 )  <  1 )  →  seq 0 (  +  ,  𝐹 )  ∈  dom   ⇝  ) |