| Step |
Hyp |
Ref |
Expression |
| 1 |
|
georeclim.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
georeclim.2 |
⊢ ( 𝜑 → 1 < ( abs ‘ 𝐴 ) ) |
| 3 |
|
georeclim.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) = ( ( 1 / 𝐴 ) ↑ 𝑘 ) ) |
| 4 |
|
0le1 |
⊢ 0 ≤ 1 |
| 5 |
|
0re |
⊢ 0 ∈ ℝ |
| 6 |
|
1re |
⊢ 1 ∈ ℝ |
| 7 |
5 6
|
lenlti |
⊢ ( 0 ≤ 1 ↔ ¬ 1 < 0 ) |
| 8 |
4 7
|
mpbi |
⊢ ¬ 1 < 0 |
| 9 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
| 10 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 11 |
9 10
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 12 |
11
|
breq2d |
⊢ ( 𝐴 = 0 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 0 ) ) |
| 13 |
8 12
|
mtbiri |
⊢ ( 𝐴 = 0 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
| 14 |
13
|
necon2ai |
⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 0 ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 16 |
1 15
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| 17 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 18 |
17 1 15
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 19 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 20 |
19
|
oveq1i |
⊢ ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) = ( 1 / ( abs ‘ 𝐴 ) ) |
| 21 |
18 20
|
eqtrdi |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) = ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 22 |
1 15
|
absrpcld |
⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 23 |
22
|
recgt1d |
⊢ ( 𝜑 → ( 1 < ( abs ‘ 𝐴 ) ↔ ( 1 / ( abs ‘ 𝐴 ) ) < 1 ) ) |
| 24 |
2 23
|
mpbid |
⊢ ( 𝜑 → ( 1 / ( abs ‘ 𝐴 ) ) < 1 ) |
| 25 |
21 24
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( 1 / 𝐴 ) ) < 1 ) |
| 26 |
16 25 3
|
geolim |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) ) |
| 27 |
1 17 1 15
|
divsubdird |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) − ( 1 / 𝐴 ) ) ) |
| 28 |
1 15
|
dividd |
⊢ ( 𝜑 → ( 𝐴 / 𝐴 ) = 1 ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐴 ) − ( 1 / 𝐴 ) ) = ( 1 − ( 1 / 𝐴 ) ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) / 𝐴 ) = ( 1 − ( 1 / 𝐴 ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝜑 → ( 1 / ( ( 𝐴 − 1 ) / 𝐴 ) ) = ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) ) |
| 32 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 33 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 − 1 ) ∈ ℂ ) |
| 34 |
1 32 33
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ∈ ℂ ) |
| 35 |
6
|
ltnri |
⊢ ¬ 1 < 1 |
| 36 |
|
fveq2 |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = ( abs ‘ 1 ) ) |
| 37 |
36 19
|
eqtrdi |
⊢ ( 𝐴 = 1 → ( abs ‘ 𝐴 ) = 1 ) |
| 38 |
37
|
breq2d |
⊢ ( 𝐴 = 1 → ( 1 < ( abs ‘ 𝐴 ) ↔ 1 < 1 ) ) |
| 39 |
35 38
|
mtbiri |
⊢ ( 𝐴 = 1 → ¬ 1 < ( abs ‘ 𝐴 ) ) |
| 40 |
39
|
necon2ai |
⊢ ( 1 < ( abs ‘ 𝐴 ) → 𝐴 ≠ 1 ) |
| 41 |
2 40
|
syl |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 42 |
|
subeq0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) |
| 43 |
1 32 42
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) = 0 ↔ 𝐴 = 1 ) ) |
| 44 |
43
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝐴 − 1 ) ≠ 0 ↔ 𝐴 ≠ 1 ) ) |
| 45 |
41 44
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 − 1 ) ≠ 0 ) |
| 46 |
34 1 45 15
|
recdivd |
⊢ ( 𝜑 → ( 1 / ( ( 𝐴 − 1 ) / 𝐴 ) ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| 47 |
31 46
|
eqtr3d |
⊢ ( 𝜑 → ( 1 / ( 1 − ( 1 / 𝐴 ) ) ) = ( 𝐴 / ( 𝐴 − 1 ) ) ) |
| 48 |
26 47
|
breqtrd |
⊢ ( 𝜑 → seq 0 ( + , 𝐹 ) ⇝ ( 𝐴 / ( 𝐴 − 1 ) ) ) |