| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geoser.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | geoser.2 | ⊢ ( 𝜑  →  𝐴  ≠  1 ) | 
						
							| 3 |  | geoser.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝜑  →  0  ∈  ℕ0 ) | 
						
							| 6 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 7 | 3 6 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 8 | 1 2 5 7 | geoserg | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  =  ( ( ( 𝐴 ↑ 0 )  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 9 | 3 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 10 |  | fzoval | ⊢ ( 𝑁  ∈  ℤ  →  ( 0 ..^ 𝑁 )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( 0 ..^ 𝑁 )  =  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 12 | 11 | sumeq1d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 13 | 1 | exp0d | ⊢ ( 𝜑  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 0 )  −  ( 𝐴 ↑ 𝑁 ) )  =  ( 1  −  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 0 )  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) )  =  ( ( 1  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) ) ) | 
						
							| 16 | 8 12 15 | 3eqtr3d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... ( 𝑁  −  1 ) ) ( 𝐴 ↑ 𝑘 )  =  ( ( 1  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) ) ) |