| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geoser.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
geoser.2 |
⊢ ( 𝜑 → 𝐴 ≠ 1 ) |
| 3 |
|
geoser.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 6 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 7 |
3 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 |
1 2 5 7
|
geoserg |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = ( ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| 9 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 |
|
fzoval |
⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 12 |
11
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 ↑ 𝑘 ) ) |
| 13 |
1
|
exp0d |
⊢ ( 𝜑 → ( 𝐴 ↑ 0 ) = 1 ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) = ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) |
| 15 |
14
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| 16 |
8 12 15
|
3eqtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |