| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geoserg.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | geoserg.2 | ⊢ ( 𝜑  →  𝐴  ≠  1 ) | 
						
							| 3 |  | geoserg.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | geoserg.4 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 |  | fzofi | ⊢ ( 𝑀 ..^ 𝑁 )  ∈  Fin | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( 𝑀 ..^ 𝑁 )  ∈  Fin ) | 
						
							| 7 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 8 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 9 | 7 1 8 | sylancr | ⊢ ( 𝜑  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 10 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 11 |  | elfzouz | ⊢ ( 𝑘  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 12 |  | eluznn0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 13 | 3 11 12 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 14 | 10 13 | expcld | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 15 | 6 9 14 | fsummulc1 | ⊢ ( 𝜑  →  ( Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) )  =  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) ) ) | 
						
							| 16 | 7 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  1  ∈  ℂ ) | 
						
							| 17 | 14 16 10 | subdid | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) )  =  ( ( ( 𝐴 ↑ 𝑘 )  ·  1 )  −  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) ) | 
						
							| 18 | 14 | mulridd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  1 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 19 | 10 13 | expp1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐴 ↑ ( 𝑘  +  1 ) )  =  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 )  =  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 21 | 18 20 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ( 𝐴 ↑ 𝑘 )  ·  1 )  −  ( ( 𝐴 ↑ 𝑘 )  ·  𝐴 ) )  =  ( ( 𝐴 ↑ 𝑘 )  −  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) )  =  ( ( 𝐴 ↑ 𝑘 )  −  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 23 | 22 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) )  =  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 )  −  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑗  =  𝑘  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 25 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑘  +  1 )  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ ( 𝑘  +  1 ) ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑗  =  𝑀  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 27 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝐴 ↑ 𝑗 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 29 |  | elfzuz | ⊢ ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 30 |  | eluznn0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 31 | 3 29 30 | syl2an | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝑗  ∈  ℕ0 ) | 
						
							| 32 | 28 31 | expcld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  ( 𝐴 ↑ 𝑗 )  ∈  ℂ ) | 
						
							| 33 | 24 25 26 27 4 32 | telfsumo | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( ( 𝐴 ↑ 𝑘 )  −  ( 𝐴 ↑ ( 𝑘  +  1 ) ) )  =  ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 34 | 15 23 33 | 3eqtrrd | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  =  ( Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) ) ) | 
						
							| 35 | 1 3 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 36 |  | eluznn0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 37 | 3 4 36 | syl2anc | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 38 | 1 37 | expcld | ⊢ ( 𝜑  →  ( 𝐴 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 39 | 35 38 | subcld | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 40 | 6 14 | fsumcl | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 41 | 2 | necomd | ⊢ ( 𝜑  →  1  ≠  𝐴 ) | 
						
							| 42 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 43 | 7 1 42 | sylancr | ⊢ ( 𝜑  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 44 | 43 | necon3bid | ⊢ ( 𝜑  →  ( ( 1  −  𝐴 )  ≠  0  ↔  1  ≠  𝐴 ) ) | 
						
							| 45 | 41 44 | mpbird | ⊢ ( 𝜑  →  ( 1  −  𝐴 )  ≠  0 ) | 
						
							| 46 | 39 40 9 45 | divmul3d | ⊢ ( 𝜑  →  ( ( ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) )  =  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  ↔  ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  =  ( Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  ·  ( 1  −  𝐴 ) ) ) ) | 
						
							| 47 | 34 46 | mpbird | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) )  =  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) ) | 
						
							| 48 | 47 | eqcomd | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 𝑀 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 )  =  ( ( ( 𝐴 ↑ 𝑀 )  −  ( 𝐴 ↑ 𝑁 ) )  /  ( 1  −  𝐴 ) ) ) |