Metamath Proof Explorer


Theorem gex1

Description: A group or monoid has exponent 1 iff it is trivial. (Contributed by Mario Carneiro, 24-Apr-2016)

Ref Expression
Hypotheses gexcl2.1 𝑋 = ( Base ‘ 𝐺 )
gexcl2.2 𝐸 = ( gEx ‘ 𝐺 )
Assertion gex1 ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝑋 ≈ 1o ) )

Proof

Step Hyp Ref Expression
1 gexcl2.1 𝑋 = ( Base ‘ 𝐺 )
2 gexcl2.2 𝐸 = ( gEx ‘ 𝐺 )
3 simplr ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → 𝐸 = 1 )
4 3 oveq1d ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → ( 𝐸 ( .g𝐺 ) 𝑥 ) = ( 1 ( .g𝐺 ) 𝑥 ) )
5 eqid ( .g𝐺 ) = ( .g𝐺 )
6 eqid ( 0g𝐺 ) = ( 0g𝐺 )
7 1 2 5 6 gexid ( 𝑥𝑋 → ( 𝐸 ( .g𝐺 ) 𝑥 ) = ( 0g𝐺 ) )
8 7 adantl ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → ( 𝐸 ( .g𝐺 ) 𝑥 ) = ( 0g𝐺 ) )
9 1 5 mulg1 ( 𝑥𝑋 → ( 1 ( .g𝐺 ) 𝑥 ) = 𝑥 )
10 9 adantl ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → ( 1 ( .g𝐺 ) 𝑥 ) = 𝑥 )
11 4 8 10 3eqtr3rd ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → 𝑥 = ( 0g𝐺 ) )
12 velsn ( 𝑥 ∈ { ( 0g𝐺 ) } ↔ 𝑥 = ( 0g𝐺 ) )
13 11 12 sylibr ( ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) ∧ 𝑥𝑋 ) → 𝑥 ∈ { ( 0g𝐺 ) } )
14 13 ex ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 𝑥𝑋𝑥 ∈ { ( 0g𝐺 ) } ) )
15 14 ssrdv ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ⊆ { ( 0g𝐺 ) } )
16 1 6 mndidcl ( 𝐺 ∈ Mnd → ( 0g𝐺 ) ∈ 𝑋 )
17 16 adantr ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → ( 0g𝐺 ) ∈ 𝑋 )
18 17 snssd ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → { ( 0g𝐺 ) } ⊆ 𝑋 )
19 15 18 eqssd ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 = { ( 0g𝐺 ) } )
20 fvex ( 0g𝐺 ) ∈ V
21 20 ensn1 { ( 0g𝐺 ) } ≈ 1o
22 19 21 eqbrtrdi ( ( 𝐺 ∈ Mnd ∧ 𝐸 = 1 ) → 𝑋 ≈ 1o )
23 simpl ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐺 ∈ Mnd )
24 1nn 1 ∈ ℕ
25 24 a1i ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 1 ∈ ℕ )
26 9 adantl ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥𝑋 ) → ( 1 ( .g𝐺 ) 𝑥 ) = 𝑥 )
27 en1eqsn ( ( ( 0g𝐺 ) ∈ 𝑋𝑋 ≈ 1o ) → 𝑋 = { ( 0g𝐺 ) } )
28 16 27 sylan ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝑋 = { ( 0g𝐺 ) } )
29 28 eleq2d ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ( 𝑥𝑋𝑥 ∈ { ( 0g𝐺 ) } ) )
30 29 biimpa ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥𝑋 ) → 𝑥 ∈ { ( 0g𝐺 ) } )
31 30 12 sylib ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥𝑋 ) → 𝑥 = ( 0g𝐺 ) )
32 26 31 eqtrd ( ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) ∧ 𝑥𝑋 ) → ( 1 ( .g𝐺 ) 𝑥 ) = ( 0g𝐺 ) )
33 32 ralrimiva ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → ∀ 𝑥𝑋 ( 1 ( .g𝐺 ) 𝑥 ) = ( 0g𝐺 ) )
34 1 2 5 6 gexlem2 ( ( 𝐺 ∈ Mnd ∧ 1 ∈ ℕ ∧ ∀ 𝑥𝑋 ( 1 ( .g𝐺 ) 𝑥 ) = ( 0g𝐺 ) ) → 𝐸 ∈ ( 1 ... 1 ) )
35 23 25 33 34 syl3anc ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 ∈ ( 1 ... 1 ) )
36 elfz1eq ( 𝐸 ∈ ( 1 ... 1 ) → 𝐸 = 1 )
37 35 36 syl ( ( 𝐺 ∈ Mnd ∧ 𝑋 ≈ 1o ) → 𝐸 = 1 )
38 22 37 impbida ( 𝐺 ∈ Mnd → ( 𝐸 = 1 ↔ 𝑋 ≈ 1o ) )