Step |
Hyp |
Ref |
Expression |
1 |
|
gexex.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexex.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
1
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝑋 = ( Base ‘ 𝐺 ) ) |
4 |
|
eqidd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
5 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Grp ) |
6 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
7 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
8 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
10 |
1 9
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
11 |
6 7 8 8 10
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
12 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
13 |
1 12 9
|
mulg2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
14 |
8 13
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
15 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐸 ∥ 2 ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
17 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
18 |
6 8 15 17
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
19 |
14 18
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
21 |
1 9 16
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
22 |
6 7 21
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
23 |
11 20 22
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
24 |
23
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
25 |
1 12 9
|
mulg2 |
⊢ ( 𝑥 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
26 |
7 25
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
27 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
28 |
6 7 15 27
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
29 |
24 26 28
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
30 |
1 9
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
31 |
6 7 8 30
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
32 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
33 |
6 31 15 32
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
34 |
1 12 9
|
mulg2 |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
35 |
31 34
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
36 |
29 33 35
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
37 |
1 9
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
38 |
6 31 8 7 37
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
39 |
36 38
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
40 |
1 9
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
41 |
6 8 7 40
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
42 |
1 9
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
43 |
6 31 41 31 42
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
44 |
39 43
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
45 |
3 4 5 44
|
isabld |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Abel ) |