| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexex.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
gexex.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
| 3 |
1
|
a1i |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝑋 = ( Base ‘ 𝐺 ) ) |
| 4 |
|
eqidd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Grp ) |
| 6 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 7 |
|
simp2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 8 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 10 |
1 9
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 11 |
6 7 8 8 10
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 12 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
| 13 |
1 12 9
|
mulg2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 14 |
8 13
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 15 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → 𝐸 ∥ 2 ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 17 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 18 |
6 8 15 17
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 19 |
14 18
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) = ( 0g ‘ 𝐺 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 21 |
1 9 16
|
grprid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 22 |
6 7 21
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 23 |
11 20 22
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) = 𝑥 ) |
| 24 |
23
|
oveq1d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 25 |
1 12 9
|
mulg2 |
⊢ ( 𝑥 ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 26 |
7 25
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 27 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 28 |
6 7 15 27
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 29 |
24 26 28
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 0g ‘ 𝐺 ) ) |
| 30 |
1 9
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 31 |
6 7 8 30
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 32 |
1 2 12 16
|
gexdvdsi |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝐸 ∥ 2 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 33 |
6 31 15 32
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 0g ‘ 𝐺 ) ) |
| 34 |
1 12 9
|
mulg2 |
⊢ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 35 |
31 34
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 2 ( .g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 36 |
29 33 35
|
3eqtr2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 37 |
1 9
|
grpass |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 38 |
6 31 8 7 37
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 39 |
36 38
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 40 |
1 9
|
grpcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 41 |
6 8 7 40
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ) |
| 42 |
1 9
|
grplcan |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ∈ 𝑋 ∧ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 43 |
6 31 41 31 42
|
syl13anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ↔ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 44 |
39 43
|
mpbid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 45 |
3 4 5 44
|
isabld |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∥ 2 ) → 𝐺 ∈ Abel ) |