Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexcl2.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
4 |
1 3
|
odcl2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ) |
5 |
1 3
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
6 |
4
|
nnzd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ) |
7 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ≠ ∅ ) |
9 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
11 |
8 10
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
12 |
|
dvdsle |
⊢ ( ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℕ ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
13 |
6 11 12
|
syl2anc |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) |
14 |
5 13
|
mpd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) |
15 |
11
|
nnzd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
16 |
|
fznn |
⊢ ( ( ♯ ‘ 𝑋 ) ∈ ℤ → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ↔ ( ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ℕ ∧ ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ≤ ( ♯ ‘ 𝑋 ) ) ) ) |
18 |
4 14 17
|
mpbir2and |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
19 |
18
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) |
21 |
1 2 3
|
gexcl3 |
⊢ ( ( 𝐺 ∈ Grp ∧ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( 1 ... ( ♯ ‘ 𝑋 ) ) ) → 𝐸 ∈ ℕ ) |
22 |
20 21
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∈ ℕ ) |