Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl2.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexcl2.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) |
4 |
1 3
|
oddvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
5 |
4
|
3expa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) ∧ 𝑥 ∈ 𝑋 ) → ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
6 |
5
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) |
7 |
|
hashcl |
⊢ ( 𝑋 ∈ Fin → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
10 |
1 2 3
|
gexdvds2 |
⊢ ( ( 𝐺 ∈ Grp ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( 𝐸 ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) ) |
11 |
9 10
|
syldan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → ( 𝐸 ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( od ‘ 𝐺 ) ‘ 𝑥 ) ∥ ( ♯ ‘ 𝑋 ) ) ) |
12 |
6 11
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ) → 𝐸 ∥ ( ♯ ‘ 𝑋 ) ) |