Step |
Hyp |
Ref |
Expression |
1 |
|
gexex.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexex.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
gexex.3 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
4 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝐺 ∈ Abel ) |
5 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝐸 ∈ ℕ ) |
6 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝑥 ∈ 𝑋 ) |
7 |
1 3
|
odf |
⊢ 𝑂 : 𝑋 ⟶ ℕ0 |
8 |
|
frn |
⊢ ( 𝑂 : 𝑋 ⟶ ℕ0 → ran 𝑂 ⊆ ℕ0 ) |
9 |
7 8
|
ax-mp |
⊢ ran 𝑂 ⊆ ℕ0 |
10 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
11 |
9 10
|
sstri |
⊢ ran 𝑂 ⊆ ℤ |
12 |
|
nnz |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) |
13 |
12
|
adantl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝐸 ∈ ℤ ) |
14 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
15 |
14
|
adantr |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝐺 ∈ Grp ) |
16 |
1 2 3
|
gexod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 ) |
17 |
15 16
|
sylan |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 ) |
18 |
1 3
|
odcl |
⊢ ( 𝑥 ∈ 𝑋 → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℕ0 ) |
20 |
19
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ∈ ℤ ) |
21 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℕ ) |
22 |
|
dvdsle |
⊢ ( ( ( 𝑂 ‘ 𝑥 ) ∈ ℤ ∧ 𝐸 ∈ ℕ ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
23 |
20 21 22
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝐸 → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
24 |
17 23
|
mpd |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
25 |
24
|
ralrimiva |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
26 |
|
ffn |
⊢ ( 𝑂 : 𝑋 ⟶ ℕ0 → 𝑂 Fn 𝑋 ) |
27 |
7 26
|
ax-mp |
⊢ 𝑂 Fn 𝑋 |
28 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑂 ‘ 𝑥 ) → ( 𝑦 ≤ 𝐸 ↔ ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
29 |
28
|
ralrn |
⊢ ( 𝑂 Fn 𝑋 → ( ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) ) |
30 |
27 29
|
ax-mp |
⊢ ( ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) ≤ 𝐸 ) |
31 |
25 30
|
sylibr |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ) |
32 |
|
brralrspcev |
⊢ ( ( 𝐸 ∈ ℤ ∧ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝐸 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) |
33 |
13 31 32
|
syl2anc |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) |
34 |
33
|
ad2antrr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) |
35 |
27
|
a1i |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → 𝑂 Fn 𝑋 ) |
36 |
|
fnfvelrn |
⊢ ( ( 𝑂 Fn 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) |
37 |
35 36
|
sylan |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) |
38 |
|
suprzub |
⊢ ( ( ran 𝑂 ⊆ ℤ ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ∧ ( 𝑂 ‘ 𝑦 ) ∈ ran 𝑂 ) → ( 𝑂 ‘ 𝑦 ) ≤ sup ( ran 𝑂 , ℝ , < ) ) |
39 |
11 34 37 38
|
mp3an2i |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ sup ( ran 𝑂 , ℝ , < ) ) |
40 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) |
41 |
39 40
|
breqtrrd |
⊢ ( ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) |
42 |
1 2 3 4 5 6 41
|
gexexlem |
⊢ ( ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) → ( 𝑂 ‘ 𝑥 ) = 𝐸 ) |
43 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
44 |
15 43
|
syl |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → 𝑋 ≠ ∅ ) |
45 |
7
|
fdmi |
⊢ dom 𝑂 = 𝑋 |
46 |
45
|
eqeq1i |
⊢ ( dom 𝑂 = ∅ ↔ 𝑋 = ∅ ) |
47 |
|
dm0rn0 |
⊢ ( dom 𝑂 = ∅ ↔ ran 𝑂 = ∅ ) |
48 |
46 47
|
bitr3i |
⊢ ( 𝑋 = ∅ ↔ ran 𝑂 = ∅ ) |
49 |
48
|
necon3bii |
⊢ ( 𝑋 ≠ ∅ ↔ ran 𝑂 ≠ ∅ ) |
50 |
44 49
|
sylib |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ran 𝑂 ≠ ∅ ) |
51 |
|
suprzcl2 |
⊢ ( ( ran 𝑂 ⊆ ℤ ∧ ran 𝑂 ≠ ∅ ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑦 ∈ ran 𝑂 𝑦 ≤ 𝑛 ) → sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ) |
52 |
11 50 33 51
|
mp3an2i |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ) |
53 |
|
fvelrnb |
⊢ ( 𝑂 Fn 𝑋 → ( sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) ) |
54 |
27 53
|
ax-mp |
⊢ ( sup ( ran 𝑂 , ℝ , < ) ∈ ran 𝑂 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) |
55 |
52 54
|
sylib |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = sup ( ran 𝑂 , ℝ , < ) ) |
56 |
42 55
|
reximddv |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝐸 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑋 ( 𝑂 ‘ 𝑥 ) = 𝐸 ) |