Step |
Hyp |
Ref |
Expression |
1 |
|
gexcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexcl.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
gexid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
gexid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
oveq1 |
⊢ ( 𝐸 = 0 → ( 𝐸 · 𝐴 ) = ( 0 · 𝐴 ) ) |
6 |
1 4 3
|
mulg0 |
⊢ ( 𝐴 ∈ 𝑋 → ( 0 · 𝐴 ) = 0 ) |
7 |
5 6
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 = 0 ) → ( 𝐸 · 𝐴 ) = 0 ) |
8 |
7
|
adantrr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ) → ( 𝐸 · 𝐴 ) = 0 ) |
9 |
|
oveq1 |
⊢ ( 𝑦 = 𝐸 → ( 𝑦 · 𝑥 ) = ( 𝐸 · 𝑥 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑦 = 𝐸 → ( ( 𝑦 · 𝑥 ) = 0 ↔ ( 𝐸 · 𝑥 ) = 0 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑦 = 𝐸 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) ) |
12 |
11
|
elrab |
⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ↔ ( 𝐸 ∈ ℕ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) ) |
13 |
12
|
simprbi |
⊢ ( 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } → ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐸 · 𝑥 ) = ( 𝐸 · 𝐴 ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐸 · 𝑥 ) = 0 ↔ ( 𝐸 · 𝐴 ) = 0 ) ) |
16 |
15
|
rspcva |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝐸 · 𝑥 ) = 0 ) → ( 𝐸 · 𝐴 ) = 0 ) |
17 |
13 16
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) → ( 𝐸 · 𝐴 ) = 0 ) |
18 |
|
elfvex |
⊢ ( 𝐴 ∈ ( Base ‘ 𝐺 ) → 𝐺 ∈ V ) |
19 |
18 1
|
eleq2s |
⊢ ( 𝐴 ∈ 𝑋 → 𝐺 ∈ V ) |
20 |
|
eqid |
⊢ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } |
21 |
1 3 4 2 20
|
gexlem1 |
⊢ ( 𝐺 ∈ V → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
22 |
19 21
|
syl |
⊢ ( 𝐴 ∈ 𝑋 → ( ( 𝐸 = 0 ∧ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } = ∅ ) ∨ 𝐸 ∈ { 𝑦 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑋 ( 𝑦 · 𝑥 ) = 0 } ) ) |
23 |
8 17 22
|
mpjaodan |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 · 𝐴 ) = 0 ) |