| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gexod.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
gexod.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
| 3 |
|
gexod.3 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 4 |
|
nnne0 |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ≠ 0 ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ≠ 0 ) |
| 6 |
|
nnz |
⊢ ( 𝐸 ∈ ℕ → 𝐸 ∈ ℤ ) |
| 7 |
6
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℤ ) |
| 8 |
|
0dvds |
⊢ ( 𝐸 ∈ ℤ → ( 0 ∥ 𝐸 ↔ 𝐸 = 0 ) ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 0 ∥ 𝐸 ↔ 𝐸 = 0 ) ) |
| 10 |
9
|
necon3bbid |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ¬ 0 ∥ 𝐸 ↔ 𝐸 ≠ 0 ) ) |
| 11 |
5 10
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ¬ 0 ∥ 𝐸 ) |
| 12 |
1 2 3
|
gexod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 13 |
12
|
3adant2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |
| 14 |
|
breq1 |
⊢ ( ( 𝑂 ‘ 𝐴 ) = 0 → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ 0 ∥ 𝐸 ) ) |
| 15 |
13 14
|
syl5ibcom |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) = 0 → 0 ∥ 𝐸 ) ) |
| 16 |
11 15
|
mtod |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ¬ ( 𝑂 ‘ 𝐴 ) = 0 ) |
| 17 |
1 3
|
odcl |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 18 |
17
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ) |
| 19 |
|
elnn0 |
⊢ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ0 ↔ ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∨ ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 21 |
20
|
ord |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( ¬ ( 𝑂 ‘ 𝐴 ) ∈ ℕ → ( 𝑂 ‘ 𝐴 ) = 0 ) ) |
| 22 |
16 21
|
mt3d |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐸 ∈ ℕ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |