Step |
Hyp |
Ref |
Expression |
1 |
|
gexod.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
gexod.2 |
⊢ 𝐸 = ( gEx ‘ 𝐺 ) |
3 |
|
gexod.3 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
1 2 4 5
|
gexid |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) |
8 |
1 2
|
gexcl |
⊢ ( 𝐺 ∈ Grp → 𝐸 ∈ ℕ0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℕ0 ) |
10 |
9
|
nn0zd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → 𝐸 ∈ ℤ ) |
11 |
1 3 4 5
|
oddvds |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐸 ∈ ℤ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
12 |
10 11
|
mpd3an3 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ↔ ( 𝐸 ( .g ‘ 𝐺 ) 𝐴 ) = ( 0g ‘ 𝐺 ) ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑂 ‘ 𝐴 ) ∥ 𝐸 ) |