Metamath Proof Explorer


Theorem ghmcmn

Description: The image of a commutative monoid G under a group homomorphism F is a commutative monoid. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypotheses ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
ghmabl.p + = ( +g𝐺 )
ghmabl.q = ( +g𝐻 )
ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
ghmcmn.3 ( 𝜑𝐺 ∈ CMnd )
Assertion ghmcmn ( 𝜑𝐻 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 ghmabl.x 𝑋 = ( Base ‘ 𝐺 )
2 ghmabl.y 𝑌 = ( Base ‘ 𝐻 )
3 ghmabl.p + = ( +g𝐺 )
4 ghmabl.q = ( +g𝐻 )
5 ghmabl.f ( ( 𝜑𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
6 ghmabl.1 ( 𝜑𝐹 : 𝑋onto𝑌 )
7 ghmcmn.3 ( 𝜑𝐺 ∈ CMnd )
8 cmnmnd ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd )
9 7 8 syl ( 𝜑𝐺 ∈ Mnd )
10 5 1 2 3 4 6 9 mhmmnd ( 𝜑𝐻 ∈ Mnd )
11 simp-6l ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → 𝜑 )
12 11 7 syl ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → 𝐺 ∈ CMnd )
13 simp-4r ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → 𝑎𝑋 )
14 simplr ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → 𝑏𝑋 )
15 1 3 cmncom ( ( 𝐺 ∈ CMnd ∧ 𝑎𝑋𝑏𝑋 ) → ( 𝑎 + 𝑏 ) = ( 𝑏 + 𝑎 ) )
16 12 13 14 15 syl3anc ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝑎 + 𝑏 ) = ( 𝑏 + 𝑎 ) )
17 16 fveq2d ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑏 + 𝑎 ) ) )
18 11 5 syl3an1 ( ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) ∧ 𝑥𝑋𝑦𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
19 18 13 14 mhmlem ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) )
20 18 14 13 mhmlem ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝐹 ‘ ( 𝑏 + 𝑎 ) ) = ( ( 𝐹𝑏 ) ( 𝐹𝑎 ) ) )
21 17 19 20 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( ( 𝐹𝑏 ) ( 𝐹𝑎 ) ) )
22 simpllr ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝐹𝑎 ) = 𝑖 )
23 simpr ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝐹𝑏 ) = 𝑗 )
24 22 23 oveq12d ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( ( 𝐹𝑎 ) ( 𝐹𝑏 ) ) = ( 𝑖 𝑗 ) )
25 23 22 oveq12d ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( ( 𝐹𝑏 ) ( 𝐹𝑎 ) ) = ( 𝑗 𝑖 ) )
26 21 24 25 3eqtr3d ( ( ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) ∧ 𝑏𝑋 ) ∧ ( 𝐹𝑏 ) = 𝑗 ) → ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) )
27 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑗𝑌 ) → ∃ 𝑏𝑋 ( 𝐹𝑏 ) = 𝑗 )
28 6 27 sylan ( ( 𝜑𝑗𝑌 ) → ∃ 𝑏𝑋 ( 𝐹𝑏 ) = 𝑗 )
29 28 ad5ant13 ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) → ∃ 𝑏𝑋 ( 𝐹𝑏 ) = 𝑗 )
30 26 29 r19.29a ( ( ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) ∧ 𝑎𝑋 ) ∧ ( 𝐹𝑎 ) = 𝑖 ) → ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) )
31 foelrni ( ( 𝐹 : 𝑋onto𝑌𝑖𝑌 ) → ∃ 𝑎𝑋 ( 𝐹𝑎 ) = 𝑖 )
32 6 31 sylan ( ( 𝜑𝑖𝑌 ) → ∃ 𝑎𝑋 ( 𝐹𝑎 ) = 𝑖 )
33 32 adantr ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) → ∃ 𝑎𝑋 ( 𝐹𝑎 ) = 𝑖 )
34 30 33 r19.29a ( ( ( 𝜑𝑖𝑌 ) ∧ 𝑗𝑌 ) → ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) )
35 34 anasss ( ( 𝜑 ∧ ( 𝑖𝑌𝑗𝑌 ) ) → ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) )
36 35 ralrimivva ( 𝜑 → ∀ 𝑖𝑌𝑗𝑌 ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) )
37 2 4 iscmn ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑖𝑌𝑗𝑌 ( 𝑖 𝑗 ) = ( 𝑗 𝑖 ) ) )
38 10 36 37 sylanbrc ( 𝜑𝐻 ∈ CMnd )