Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) → 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ) |
2 |
|
ghmmhm |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) |
3 |
|
mhmco |
⊢ ( ( 𝐹 ∈ ( 𝑇 MndHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 MndHom 𝑈 ) ) |
5 |
|
ghmgrp1 |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
6 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) → 𝑈 ∈ Grp ) |
7 |
|
ghmmhmb |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑈 ∈ Grp ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) |
8 |
5 6 7
|
syl2anr |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑆 GrpHom 𝑈 ) = ( 𝑆 MndHom 𝑈 ) ) |
9 |
4 8
|
eleqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝑇 GrpHom 𝑈 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑆 GrpHom 𝑈 ) ) |