Step |
Hyp |
Ref |
Expression |
1 |
|
cygctb.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ghmcyg.1 |
⊢ 𝐶 = ( Base ‘ 𝐻 ) |
3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
4 |
1 3
|
iscyg |
⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) |
5 |
4
|
simprbi |
⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) |
6 |
|
eqid |
⊢ ( .g ‘ 𝐻 ) = ( .g ‘ 𝐻 ) |
7 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐻 ∈ Grp ) |
9 |
|
fof |
⊢ ( 𝐹 : 𝐵 –onto→ 𝐶 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
10 |
9
|
ad2antlr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
11 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
12 |
10 11
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
13 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : 𝐵 –onto→ 𝐶 ) |
14 |
|
foeq2 |
⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) |
15 |
14
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ↔ 𝐹 : 𝐵 –onto→ 𝐶 ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ) |
17 |
|
foelrn |
⊢ ( ( 𝐹 : ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) –onto→ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ) |
18 |
16 17
|
sylan |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ) |
19 |
|
ovex |
⊢ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V |
20 |
19
|
rgenw |
⊢ ∀ 𝑚 ∈ ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V |
21 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) |
22 |
21
|
cbvmptv |
⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ∈ ℤ ↦ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑧 = ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) → ( 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
25 |
22 24
|
rexrnmptw |
⊢ ( ∀ 𝑚 ∈ ℤ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ∈ V → ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) ) |
26 |
20 25
|
ax-mp |
⊢ ( ∃ 𝑧 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) 𝑦 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
27 |
18 26
|
sylib |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ) |
28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
29 |
|
simpr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑚 ∈ ℤ ) |
30 |
11
|
ad2antrr |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → 𝑥 ∈ 𝐵 ) |
31 |
1 3 6
|
ghmmulg |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑚 ∈ ℤ ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
32 |
28 29 30 31
|
syl3anc |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
33 |
32
|
eqeq2d |
⊢ ( ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑚 ∈ ℤ ) → ( 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ↔ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
34 |
33
|
rexbidva |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝐹 ‘ ( 𝑚 ( .g ‘ 𝐺 ) 𝑥 ) ) ↔ ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
35 |
27 34
|
mpbid |
⊢ ( ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑚 ∈ ℤ 𝑦 = ( 𝑚 ( .g ‘ 𝐻 ) ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
2 6 8 12 35
|
iscygd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 ) ) → 𝐻 ∈ CycGrp ) |
37 |
36
|
rexlimdvaa |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 → 𝐻 ∈ CycGrp ) ) |
38 |
5 37
|
syl5 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝐹 : 𝐵 –onto→ 𝐶 ) → ( 𝐺 ∈ CycGrp → 𝐻 ∈ CycGrp ) ) |