Metamath Proof Explorer


Theorem ghmeqker

Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmeqker.b 𝐵 = ( Base ‘ 𝑆 )
ghmeqker.z 0 = ( 0g𝑇 )
ghmeqker.k 𝐾 = ( 𝐹 “ { 0 } )
ghmeqker.m = ( -g𝑆 )
Assertion ghmeqker ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝐹𝑈 ) = ( 𝐹𝑉 ) ↔ ( 𝑈 𝑉 ) ∈ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 ghmeqker.b 𝐵 = ( Base ‘ 𝑆 )
2 ghmeqker.z 0 = ( 0g𝑇 )
3 ghmeqker.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmeqker.m = ( -g𝑆 )
5 2 sneqi { 0 } = { ( 0g𝑇 ) }
6 5 imaeq2i ( 𝐹 “ { 0 } ) = ( 𝐹 “ { ( 0g𝑇 ) } )
7 3 6 eqtri 𝐾 = ( 𝐹 “ { ( 0g𝑇 ) } )
8 7 eleq2i ( ( 𝑈 𝑉 ) ∈ 𝐾 ↔ ( 𝑈 𝑉 ) ∈ ( 𝐹 “ { ( 0g𝑇 ) } ) )
9 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
10 1 9 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
11 10 ffnd ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 Fn 𝐵 )
12 11 3ad2ant1 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → 𝐹 Fn 𝐵 )
13 fniniseg ( 𝐹 Fn 𝐵 → ( ( 𝑈 𝑉 ) ∈ ( 𝐹 “ { ( 0g𝑇 ) } ) ↔ ( ( 𝑈 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ) ) )
14 12 13 syl ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝑈 𝑉 ) ∈ ( 𝐹 “ { ( 0g𝑇 ) } ) ↔ ( ( 𝑈 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ) ) )
15 8 14 syl5bb ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝑈 𝑉 ) ∈ 𝐾 ↔ ( ( 𝑈 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ) ) )
16 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
17 1 4 grpsubcl ( ( 𝑆 ∈ Grp ∧ 𝑈𝐵𝑉𝐵 ) → ( 𝑈 𝑉 ) ∈ 𝐵 )
18 16 17 syl3an1 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( 𝑈 𝑉 ) ∈ 𝐵 )
19 18 biantrurd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ↔ ( ( 𝑈 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ) ) )
20 eqid ( -g𝑇 ) = ( -g𝑇 )
21 1 4 20 ghmsub ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( ( 𝐹𝑈 ) ( -g𝑇 ) ( 𝐹𝑉 ) ) )
22 21 eqeq1d ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ↔ ( ( 𝐹𝑈 ) ( -g𝑇 ) ( 𝐹𝑉 ) ) = ( 0g𝑇 ) ) )
23 19 22 bitr3d ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( ( 𝑈 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 𝑉 ) ) = ( 0g𝑇 ) ) ↔ ( ( 𝐹𝑈 ) ( -g𝑇 ) ( 𝐹𝑉 ) ) = ( 0g𝑇 ) ) )
24 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
25 24 3ad2ant1 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → 𝑇 ∈ Grp )
26 10 3ad2ant1 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) )
27 simp2 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → 𝑈𝐵 )
28 26 27 ffvelrnd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( 𝐹𝑈 ) ∈ ( Base ‘ 𝑇 ) )
29 simp3 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → 𝑉𝐵 )
30 26 29 ffvelrnd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( 𝐹𝑉 ) ∈ ( Base ‘ 𝑇 ) )
31 eqid ( 0g𝑇 ) = ( 0g𝑇 )
32 9 31 20 grpsubeq0 ( ( 𝑇 ∈ Grp ∧ ( 𝐹𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹𝑉 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( 𝐹𝑈 ) ( -g𝑇 ) ( 𝐹𝑉 ) ) = ( 0g𝑇 ) ↔ ( 𝐹𝑈 ) = ( 𝐹𝑉 ) ) )
33 25 28 30 32 syl3anc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( ( 𝐹𝑈 ) ( -g𝑇 ) ( 𝐹𝑉 ) ) = ( 0g𝑇 ) ↔ ( 𝐹𝑈 ) = ( 𝐹𝑉 ) ) )
34 15 23 33 3bitrrd ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈𝐵𝑉𝐵 ) → ( ( 𝐹𝑈 ) = ( 𝐹𝑉 ) ↔ ( 𝑈 𝑉 ) ∈ 𝐾 ) )