Step |
Hyp |
Ref |
Expression |
1 |
|
ghmeqker.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
ghmeqker.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
3 |
|
ghmeqker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
ghmeqker.m |
⊢ − = ( -g ‘ 𝑆 ) |
5 |
2
|
sneqi |
⊢ { 0 } = { ( 0g ‘ 𝑇 ) } |
6 |
5
|
imaeq2i |
⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) |
7 |
3 6
|
eqtri |
⊢ 𝐾 = ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) |
8 |
7
|
eleq2i |
⊢ ( ( 𝑈 − 𝑉 ) ∈ 𝐾 ↔ ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
10 |
1 9
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
11 |
10
|
ffnd |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 Fn 𝐵 ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝐹 Fn 𝐵 ) |
13 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐵 → ( ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
15 |
8 14
|
syl5bb |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝑈 − 𝑉 ) ∈ 𝐾 ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
16 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
17 |
1 4
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) ∈ 𝐵 ) |
18 |
16 17
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) ∈ 𝐵 ) |
19 |
18
|
biantrurd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
20 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
21 |
1 4 20
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) |
23 |
19 22
|
bitr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ↔ ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) |
24 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑇 ∈ Grp ) |
26 |
10
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
27 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑈 ∈ 𝐵 ) |
28 |
26 27
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ) |
29 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑉 ∈ 𝐵 ) |
30 |
26 29
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) |
31 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
32 |
9 31 20
|
grpsubeq0 |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) ) |
33 |
25 28 30 32
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) ) |
34 |
15 23 33
|
3bitrrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ↔ ( 𝑈 − 𝑉 ) ∈ 𝐾 ) ) |