Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ) |
2 |
|
ghmmhm |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) |
3 |
|
mhmeql |
⊢ ( ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 MndHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ) |
5 |
|
fveq2 |
⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑦 = ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) ) |
8 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝑆 ∈ Grp ) |
10 |
9
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → 𝑆 ∈ Grp ) |
11 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
13 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
14 |
12 13
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
15 |
10 11 14
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
16 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
18 |
|
eqid |
⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) |
19 |
12 13 18
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
20 |
19
|
ad2ant2r |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
21 |
12 13 18
|
ghminv |
⊢ ( ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
22 |
21
|
ad2ant2lr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐺 ‘ 𝑥 ) ) ) |
23 |
17 20 22
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝐺 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
24 |
7 15 23
|
elrabd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
25 |
24
|
expr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
26 |
25
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
27 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
28 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑥 ) ) |
29 |
27 28
|
eqeq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
30 |
29
|
ralrab |
⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ↔ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
31 |
26 30
|
sylibr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
33 |
12 32
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
35 |
34
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
36 |
12 32
|
ghmf |
⊢ ( 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐺 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
38 |
37
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐺 Fn ( Base ‘ 𝑆 ) ) |
39 |
|
fndmin |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝐺 Fn ( Base ‘ 𝑆 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
40 |
35 38 39
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) |
41 |
|
eleq2 |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } → ( ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
42 |
41
|
raleqbi1dv |
⊢ ( dom ( 𝐹 ∩ 𝐺 ) = { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } → ( ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
43 |
40 42
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ↔ ∀ 𝑥 ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑦 ∈ ( Base ‘ 𝑆 ) ∣ ( 𝐹 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) } ) ) |
44 |
31 43
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) |
45 |
13
|
issubg3 |
⊢ ( 𝑆 ∈ Grp → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
46 |
9 45
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ↔ ( dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubMnd ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ∩ 𝐺 ) ( ( invg ‘ 𝑆 ) ‘ 𝑥 ) ∈ dom ( 𝐹 ∩ 𝐺 ) ) ) ) |
47 |
4 44 46
|
mpbir2and |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐺 ∈ ( 𝑆 GrpHom 𝑇 ) ) → dom ( 𝐹 ∩ 𝐺 ) ∈ ( SubGrp ‘ 𝑆 ) ) |