Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmf.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| ghmf.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | ||
| Assertion | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | ghmf.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | isghm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑥 ∈ 𝑋 ( 𝐹 ‘ ( 𝑦 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 7 | 6 | simpld | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |