Step |
Hyp |
Ref |
Expression |
1 |
|
f1ghm0to0.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
2 |
|
f1ghm0to0.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
3 |
|
f1ghm0to0.n |
⊢ 𝑁 = ( 0g ‘ 𝑅 ) |
4 |
|
f1ghm0to0.0 |
⊢ 0 = ( 0g ‘ 𝑆 ) |
5 |
1 2 3 4
|
f1ghm0to0 |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ 𝑥 = 𝑁 ) ) |
7 |
6
|
biimpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
8 |
7
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
9 |
1 2
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
10 |
9
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
11 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
13 |
1 11 12
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
14 |
13
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
15 |
14
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) |
16 |
15
|
eqeq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 ↔ ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ) ) |
17 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 ) ) |
18 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( 𝑥 = 𝑁 ↔ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) |
19 |
17 18
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ↔ ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) ) |
20 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) |
21 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) |
22 |
21
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝑅 ∈ Grp ) |
23 |
1 11
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
24 |
23
|
3expb |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
25 |
22 24
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ∈ 𝐴 ) |
26 |
19 20 25
|
rspcdva |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) |
27 |
16 26
|
sylbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 → ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ) ) |
28 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑆 ∈ Grp ) |
29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑆 ∈ Grp ) |
30 |
9
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
31 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
32 |
30 31
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
33 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
34 |
30 33
|
ffvelcdmd |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) |
35 |
2 4 12
|
grpsubeq0 |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
36 |
29 32 34 35
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
37 |
21
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑅 ∈ Grp ) |
38 |
1 3 11
|
grpsubeq0 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ↔ 𝑦 = 𝑧 ) ) |
39 |
37 31 33 38
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) = 𝑁 ↔ 𝑦 = 𝑧 ) ) |
40 |
27 36 39
|
3imtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
41 |
40
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
42 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
43 |
10 41 42
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
44 |
8 43
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = 0 → 𝑥 = 𝑁 ) ) ) |