| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1ghm0to0.a | ⊢ 𝐴  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | f1ghm0to0.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | f1ghm0to0.n | ⊢ 𝑁  =  ( 0g ‘ 𝑅 ) | 
						
							| 4 |  | f1ghm0to0.0 | ⊢  0   =  ( 0g ‘ 𝑆 ) | 
						
							| 5 | 1 2 3 4 | f1ghm0to0 | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =   0   ↔  𝑥  =  𝑁 ) ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =   0   ↔  𝑥  =  𝑁 ) ) | 
						
							| 7 | 6 | biimpd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝐹 : 𝐴 –1-1→ 𝐵 )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) ) | 
						
							| 9 | 1 2 | ghmf | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( -g ‘ 𝑆 )  =  ( -g ‘ 𝑆 ) | 
						
							| 13 | 1 11 12 | ghmsub | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 14 | 13 | 3expb | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =   0   ↔  ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =   0  ) ) | 
						
							| 17 |  | fveqeq2 | ⊢ ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  →  ( ( 𝐹 ‘ 𝑥 )  =   0   ↔  ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =   0  ) ) | 
						
							| 18 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  →  ( 𝑥  =  𝑁  ↔  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁 ) ) | 
						
							| 19 | 17 18 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  →  ( ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 )  ↔  ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =   0   →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁 ) ) ) | 
						
							| 20 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) ) | 
						
							| 21 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝑅  ∈  Grp ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  →  𝑅  ∈  Grp ) | 
						
							| 23 | 1 11 | grpsubcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  ∈  𝐴 ) | 
						
							| 24 | 23 | 3expb | ⊢ ( ( 𝑅  ∈  Grp  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  ∈  𝐴 ) | 
						
							| 25 | 22 24 | sylan | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  ∈  𝐴 ) | 
						
							| 26 | 19 20 25 | rspcdva | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 ) )  =   0   →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁 ) ) | 
						
							| 27 | 16 26 | sylbird | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =   0   →  ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁 ) ) | 
						
							| 28 |  | ghmgrp2 | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝑆  ∈  Grp ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝑆  ∈  Grp ) | 
						
							| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 31 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝑦  ∈  𝐴 ) | 
						
							| 32 | 30 31 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 33 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 34 | 30 33 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 35 | 2 4 12 | grpsubeq0 | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑧 )  ∈  𝐵 )  →  ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =   0   ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 36 | 29 32 34 35 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑆 ) ( 𝐹 ‘ 𝑧 ) )  =   0   ↔  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 37 | 21 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝑅  ∈  Grp ) | 
						
							| 38 | 1 3 11 | grpsubeq0 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁  ↔  𝑦  =  𝑧 ) ) | 
						
							| 39 | 37 31 33 38 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑦 ( -g ‘ 𝑅 ) 𝑧 )  =  𝑁  ↔  𝑦  =  𝑧 ) ) | 
						
							| 40 | 27 36 39 | 3imtr3d | ⊢ ( ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  →  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) | 
						
							| 42 |  | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑦  ∈  𝐴 ∀ 𝑧  ∈  𝐴 ( ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑧 )  →  𝑦  =  𝑧 ) ) ) | 
						
							| 43 | 10 41 42 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) )  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 44 | 8 43 | impbida | ⊢ ( 𝐹  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ∀ 𝑥  ∈  𝐴 ( ( 𝐹 ‘ 𝑥 )  =   0   →  𝑥  =  𝑁 ) ) ) |