Metamath Proof Explorer


Theorem ghmf1

Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008) (Revised by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypotheses ghmf1.x 𝑋 = ( Base ‘ 𝑆 )
ghmf1.y 𝑌 = ( Base ‘ 𝑇 )
ghmf1.z 0 = ( 0g𝑆 )
ghmf1.u 𝑈 = ( 0g𝑇 )
Assertion ghmf1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋1-1𝑌 ↔ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) )

Proof

Step Hyp Ref Expression
1 ghmf1.x 𝑋 = ( Base ‘ 𝑆 )
2 ghmf1.y 𝑌 = ( Base ‘ 𝑇 )
3 ghmf1.z 0 = ( 0g𝑆 )
4 ghmf1.u 𝑈 = ( 0g𝑇 )
5 3 4 ghmid ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹0 ) = 𝑈 )
6 5 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → ( 𝐹0 ) = 𝑈 )
7 6 eqeq2d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) = ( 𝐹0 ) ↔ ( 𝐹𝑥 ) = 𝑈 ) )
8 simplr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → 𝐹 : 𝑋1-1𝑌 )
9 simpr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → 𝑥𝑋 )
10 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
11 10 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → 𝑆 ∈ Grp )
12 1 3 grpidcl ( 𝑆 ∈ Grp → 0𝑋 )
13 11 12 syl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → 0𝑋 )
14 f1fveq ( ( 𝐹 : 𝑋1-1𝑌 ∧ ( 𝑥𝑋0𝑋 ) ) → ( ( 𝐹𝑥 ) = ( 𝐹0 ) ↔ 𝑥 = 0 ) )
15 8 9 13 14 syl12anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) = ( 𝐹0 ) ↔ 𝑥 = 0 ) )
16 7 15 bitr3d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) )
17 16 biimpd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) ∧ 𝑥𝑋 ) → ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) )
18 17 ralrimiva ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋1-1𝑌 ) → ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) )
19 1 2 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋𝑌 )
20 19 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) → 𝐹 : 𝑋𝑌 )
21 eqid ( -g𝑆 ) = ( -g𝑆 )
22 eqid ( -g𝑇 ) = ( -g𝑇 )
23 1 21 22 ghmsub ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑦𝑋𝑧𝑋 ) → ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) )
24 23 3expb ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) )
25 24 adantlr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) )
26 25 eqeq1d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = 𝑈 ↔ ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) = 𝑈 ) )
27 fveqeq2 ( 𝑥 = ( 𝑦 ( -g𝑆 ) 𝑧 ) → ( ( 𝐹𝑥 ) = 𝑈 ↔ ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = 𝑈 ) )
28 eqeq1 ( 𝑥 = ( 𝑦 ( -g𝑆 ) 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0 ) )
29 27 28 imbi12d ( 𝑥 = ( 𝑦 ( -g𝑆 ) 𝑧 ) → ( ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = 𝑈 → ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0 ) ) )
30 simplr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) )
31 10 adantr ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) → 𝑆 ∈ Grp )
32 1 21 grpsubcl ( ( 𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋 ) → ( 𝑦 ( -g𝑆 ) 𝑧 ) ∈ 𝑋 )
33 32 3expb ( ( 𝑆 ∈ Grp ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 ( -g𝑆 ) 𝑧 ) ∈ 𝑋 )
34 31 33 sylan ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝑦 ( -g𝑆 ) 𝑧 ) ∈ 𝑋 )
35 29 30 34 rspcdva ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g𝑆 ) 𝑧 ) ) = 𝑈 → ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0 ) )
36 26 35 sylbird ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) = 𝑈 → ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0 ) )
37 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
38 37 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → 𝑇 ∈ Grp )
39 19 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → 𝐹 : 𝑋𝑌 )
40 simprl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → 𝑦𝑋 )
41 39 40 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝐹𝑦 ) ∈ 𝑌 )
42 simprr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → 𝑧𝑋 )
43 39 42 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( 𝐹𝑧 ) ∈ 𝑌 )
44 2 4 22 grpsubeq0 ( ( 𝑇 ∈ Grp ∧ ( 𝐹𝑦 ) ∈ 𝑌 ∧ ( 𝐹𝑧 ) ∈ 𝑌 ) → ( ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) = 𝑈 ↔ ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ) )
45 38 41 43 44 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( ( 𝐹𝑦 ) ( -g𝑇 ) ( 𝐹𝑧 ) ) = 𝑈 ↔ ( 𝐹𝑦 ) = ( 𝐹𝑧 ) ) )
46 10 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → 𝑆 ∈ Grp )
47 1 3 21 grpsubeq0 ( ( 𝑆 ∈ Grp ∧ 𝑦𝑋𝑧𝑋 ) → ( ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0𝑦 = 𝑧 ) )
48 46 40 42 47 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( 𝑦 ( -g𝑆 ) 𝑧 ) = 0𝑦 = 𝑧 ) )
49 36 45 48 3imtr3d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) ∧ ( 𝑦𝑋𝑧𝑋 ) ) → ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) )
50 49 ralrimivva ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) → ∀ 𝑦𝑋𝑧𝑋 ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) )
51 dff13 ( 𝐹 : 𝑋1-1𝑌 ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑦𝑋𝑧𝑋 ( ( 𝐹𝑦 ) = ( 𝐹𝑧 ) → 𝑦 = 𝑧 ) ) )
52 20 50 51 sylanbrc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) → 𝐹 : 𝑋1-1𝑌 )
53 18 52 impbida ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋1-1𝑌 ↔ ∀ 𝑥𝑋 ( ( 𝐹𝑥 ) = 𝑈𝑥 = 0 ) ) )