Step |
Hyp |
Ref |
Expression |
1 |
|
ghmf1.x |
⊢ 𝑋 = ( Base ‘ 𝑆 ) |
2 |
|
ghmf1.y |
⊢ 𝑌 = ( Base ‘ 𝑇 ) |
3 |
|
ghmf1.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
4 |
|
ghmf1.u |
⊢ 𝑈 = ( 0g ‘ 𝑇 ) |
5 |
3 4
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 0 ) = 𝑈 ) |
6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 0 ) = 𝑈 ) |
7 |
6
|
eqeq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑈 ) ) |
8 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
9 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
10 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑆 ∈ Grp ) |
12 |
1 3
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → 0 ∈ 𝑋 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ 𝑋 ) |
14 |
|
f1fveq |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝑥 ∈ 𝑋 ∧ 0 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ↔ 𝑥 = 0 ) ) |
15 |
8 9 13 14
|
syl12anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ↔ 𝑥 = 0 ) ) |
16 |
7 15
|
bitr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑈 ↔ 𝑥 = 0 ) ) |
17 |
16
|
biimpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) |
18 |
17
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1→ 𝑌 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) |
19 |
1 2
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
20 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
21 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
22 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
23 |
1 21 22
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
24 |
23
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
25 |
24
|
adantlr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = 𝑈 ↔ ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = 𝑈 ) ) |
27 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑈 ↔ ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = 𝑈 ) ) |
28 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) → ( 𝑥 = 0 ↔ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ) ) |
29 |
27 28
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) → ( ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ↔ ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = 𝑈 → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ) ) ) |
30 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) |
31 |
10
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) → 𝑆 ∈ Grp ) |
32 |
1 21
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑋 ) |
33 |
32
|
3expb |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑋 ) |
34 |
31 33
|
sylan |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑋 ) |
35 |
29 30 34
|
rspcdva |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) ) = 𝑈 → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ) ) |
36 |
26 35
|
sylbird |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = 𝑈 → ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ) ) |
37 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑇 ∈ Grp ) |
39 |
19
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
40 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑦 ∈ 𝑋 ) |
41 |
39 40
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
42 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) |
43 |
39 42
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) |
44 |
2 4 22
|
grpsubeq0 |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
45 |
38 41 43 44
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = 𝑈 ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) ) |
46 |
10
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑆 ∈ Grp ) |
47 |
1 3 21
|
grpsubeq0 |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
48 |
46 40 42 47
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝑦 ( -g ‘ 𝑆 ) 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ) |
49 |
36 45 48
|
3imtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
50 |
49
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) → ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) |
51 |
|
dff13 |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) → 𝑦 = 𝑧 ) ) ) |
52 |
20 50 51
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
53 |
18 52
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = 𝑈 → 𝑥 = 0 ) ) ) |