Step |
Hyp |
Ref |
Expression |
1 |
|
ghmf1o.x |
⊢ 𝑋 = ( Base ‘ 𝑆 ) |
2 |
|
ghmf1o.y |
⊢ 𝑌 = ( Base ‘ 𝑇 ) |
3 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
5 |
3 4
|
jca |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
7 |
|
f1ocnv |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
9 |
|
f1of |
⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
11 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
12 |
10
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
13 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑌 ) |
14 |
12 13
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
15 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑦 ∈ 𝑌 ) |
16 |
12 15
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
19 |
1 17 18
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
20 |
11 14 16 19
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
21 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
22 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
23 |
21 13 22
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
24 |
|
f1ocnvfv2 |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
25 |
21 15 24
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
26 |
23 25
|
oveq12d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
27 |
20 26
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
28 |
11 4
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑆 ∈ Grp ) |
29 |
1 17
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) |
30 |
28 14 16 29
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) |
31 |
|
f1ocnvfv |
⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
32 |
21 30 31
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
33 |
27 32
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
34 |
33
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
35 |
10 34
|
jca |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
36 |
2 1 18 17
|
isghm |
⊢ ( ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
37 |
6 35 36
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
38 |
1 2
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
39 |
38
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
40 |
39
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 Fn 𝑋 ) |
41 |
2 1
|
ghmf |
⊢ ( ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
42 |
41
|
adantl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
43 |
42
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ◡ 𝐹 Fn 𝑌 ) |
44 |
|
dff1o4 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝐹 Fn 𝑋 ∧ ◡ 𝐹 Fn 𝑌 ) ) |
45 |
40 43 44
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
46 |
37 45
|
impbida |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) |