Metamath Proof Explorer


Theorem ghmgrp1

Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
2 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
3 eqid ( +g𝑆 ) = ( +g𝑆 )
4 eqid ( +g𝑇 ) = ( +g𝑇 )
5 1 2 3 4 isghm ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ( +g𝑆 ) 𝑥 ) ) = ( ( 𝐹𝑦 ) ( +g𝑇 ) ( 𝐹𝑥 ) ) ) ) )
6 5 simplbi ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) )
7 6 simpld ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )