Metamath Proof Explorer


Theorem ghmid

Description: A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Hypotheses ghmid.y 𝑌 = ( 0g𝑆 )
ghmid.z 0 = ( 0g𝑇 )
Assertion ghmid ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹𝑌 ) = 0 )

Proof

Step Hyp Ref Expression
1 ghmid.y 𝑌 = ( 0g𝑆 )
2 ghmid.z 0 = ( 0g𝑇 )
3 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
4 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
5 4 1 grpidcl ( 𝑆 ∈ Grp → 𝑌 ∈ ( Base ‘ 𝑆 ) )
6 3 5 syl ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑌 ∈ ( Base ‘ 𝑆 ) )
7 eqid ( +g𝑆 ) = ( +g𝑆 )
8 eqid ( +g𝑇 ) = ( +g𝑇 )
9 4 7 8 ghmlin ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑌 ( +g𝑆 ) 𝑌 ) ) = ( ( 𝐹𝑌 ) ( +g𝑇 ) ( 𝐹𝑌 ) ) )
10 6 6 9 mpd3an23 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 𝑌 ( +g𝑆 ) 𝑌 ) ) = ( ( 𝐹𝑌 ) ( +g𝑇 ) ( 𝐹𝑌 ) ) )
11 4 7 1 grplid ( ( 𝑆 ∈ Grp ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑌 ( +g𝑆 ) 𝑌 ) = 𝑌 )
12 3 6 11 syl2anc ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑌 ( +g𝑆 ) 𝑌 ) = 𝑌 )
13 12 fveq2d ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 𝑌 ( +g𝑆 ) 𝑌 ) ) = ( 𝐹𝑌 ) )
14 10 13 eqtr3d ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( 𝐹𝑌 ) ( +g𝑇 ) ( 𝐹𝑌 ) ) = ( 𝐹𝑌 ) )
15 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
16 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
17 4 16 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
18 17 6 ffvelrnd ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹𝑌 ) ∈ ( Base ‘ 𝑇 ) )
19 16 8 2 grpid ( ( 𝑇 ∈ Grp ∧ ( 𝐹𝑌 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( 𝐹𝑌 ) ( +g𝑇 ) ( 𝐹𝑌 ) ) = ( 𝐹𝑌 ) ↔ 0 = ( 𝐹𝑌 ) ) )
20 15 18 19 syl2anc ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( ( 𝐹𝑌 ) ( +g𝑇 ) ( 𝐹𝑌 ) ) = ( 𝐹𝑌 ) ↔ 0 = ( 𝐹𝑌 ) ) )
21 14 20 mpbid ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 0 = ( 𝐹𝑌 ) )
22 21 eqcomd ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹𝑌 ) = 0 )