| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmid.y |
⊢ 𝑌 = ( 0g ‘ 𝑆 ) |
| 2 |
|
ghmid.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 3 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 5 |
4 1
|
grpidcl |
⊢ ( 𝑆 ∈ Grp → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑌 ∈ ( Base ‘ 𝑆 ) ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 8 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 9 |
4 7 8
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑌 ( +g ‘ 𝑆 ) 𝑌 ) ) = ( ( 𝐹 ‘ 𝑌 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 10 |
6 6 9
|
mpd3an23 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 𝑌 ( +g ‘ 𝑆 ) 𝑌 ) ) = ( ( 𝐹 ‘ 𝑌 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 11 |
4 7 1
|
grplid |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑌 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑌 ( +g ‘ 𝑆 ) 𝑌 ) = 𝑌 ) |
| 12 |
3 6 11
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑌 ( +g ‘ 𝑆 ) 𝑌 ) = 𝑌 ) |
| 13 |
12
|
fveq2d |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 𝑌 ( +g ‘ 𝑆 ) 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 14 |
10 13
|
eqtr3d |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( 𝐹 ‘ 𝑌 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ) |
| 15 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 17 |
4 16
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 18 |
17 6
|
ffvelcdmd |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝑇 ) ) |
| 19 |
16 8 2
|
grpid |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑌 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑌 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ↔ 0 = ( 𝐹 ‘ 𝑌 ) ) ) |
| 20 |
15 18 19
|
syl2anc |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( ( 𝐹 ‘ 𝑌 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑌 ) ) = ( 𝐹 ‘ 𝑌 ) ↔ 0 = ( 𝐹 ‘ 𝑌 ) ) ) |
| 21 |
14 20
|
mpbid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 0 = ( 𝐹 ‘ 𝑌 ) ) |
| 22 |
21
|
eqcomd |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 𝑌 ) = 0 ) |