Step |
Hyp |
Ref |
Expression |
1 |
|
ghminv.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
2 |
|
ghminv.y |
⊢ 𝑀 = ( invg ‘ 𝑆 ) |
3 |
|
ghminv.z |
⊢ 𝑁 = ( invg ‘ 𝑇 ) |
4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
7 |
1 5 6 2
|
grprinv |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) = ( 0g ‘ 𝑆 ) ) |
8 |
4 7
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) = ( 0g ‘ 𝑆 ) ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
10 |
1 2
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) |
11 |
4 10
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
13 |
1 5 12
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑀 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
14 |
11 13
|
mpd3an3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑋 ( +g ‘ 𝑆 ) ( 𝑀 ‘ 𝑋 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
16 |
6 15
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
18 |
9 14 17
|
3eqtr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) |
19 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) |
20 |
19
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → 𝑇 ∈ Grp ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
22 |
1 21
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
23 |
22
|
ffvelrnda |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
24 |
22
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
25 |
24 11
|
ffvelrnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑇 ) ) |
26 |
21 12 15 3
|
grpinvid1 |
⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) ) |
27 |
20 23 25 26
|
syl3anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) = ( 0g ‘ 𝑇 ) ) ) |
28 |
18 27
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑀 ‘ 𝑋 ) ) = ( 𝑁 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |