Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmker.1 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| Assertion | ghmker | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmker.1 | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 2 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) | |
| 3 | 1 | 0nsg | ⊢ ( 𝑇 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) ) |
| 4 | 2 3 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) ) |
| 5 | ghmnsgpreima | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) ) | |
| 6 | 4 5 | mpdan | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |