Step |
Hyp |
Ref |
Expression |
1 |
|
ghmlin.x |
⊢ 𝑋 = ( Base ‘ 𝑆 ) |
2 |
|
ghmlin.a |
⊢ + = ( +g ‘ 𝑆 ) |
3 |
|
ghmlin.b |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
5 |
1 4 2 3
|
isghm |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
8 |
|
fvoveq1 |
⊢ ( 𝑎 = 𝑈 → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑎 = 𝑈 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑈 ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑎 = 𝑈 → ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
11 |
8 10
|
eqeq12d |
⊢ ( 𝑎 = 𝑈 → ( ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑏 = 𝑉 → ( 𝑈 + 𝑏 ) = ( 𝑈 + 𝑉 ) ) |
13 |
12
|
fveq2d |
⊢ ( 𝑏 = 𝑉 → ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) ) |
14 |
|
fveq2 |
⊢ ( 𝑏 = 𝑉 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑉 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑏 = 𝑉 → ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑏 = 𝑉 → ( ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) ) |
17 |
11 16
|
rspc2v |
⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) ) |
18 |
7 17
|
mpan9 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |
19 |
18
|
3impb |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |