Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmhm |
⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
6 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑆 ∈ Grp ) |
7 |
|
simplr |
⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑇 ∈ Grp ) |
8 |
2 3
|
mhmf |
⊢ ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑓 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑓 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
10 |
2 4 5
|
mhmlin |
⊢ ( ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
11 |
10
|
3expb |
⊢ ( ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
12 |
11
|
adantll |
⊢ ( ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝑓 ‘ 𝑦 ) ) ) |
13 |
2 3 4 5 6 7 9 12
|
isghmd |
⊢ ( ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) → 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
14 |
13
|
ex |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) → 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) ) |
15 |
1 14
|
impbid2 |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝑓 ∈ ( 𝑆 MndHom 𝑇 ) ) ) |
16 |
15
|
eqrdv |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) → ( 𝑆 GrpHom 𝑇 ) = ( 𝑆 MndHom 𝑇 ) ) |