| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmmulg.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ghmmulg.s | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | ghmmulg.t | ⊢  ×   =  ( .g ‘ 𝐻 ) | 
						
							| 4 |  | ghmmhm | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐹  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 5 | 1 2 3 | mhmmulg | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 8 | 7 | an32s | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑋  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 9 | 8 | 3adantl2 | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐹  ∈  ( 𝐺  GrpHom  𝐻 ) ) | 
						
							| 11 | 10 4 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐹  ∈  ( 𝐺  MndHom  𝐻 ) ) | 
						
							| 12 |  | nnnn0 | ⊢ ( - 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℕ0 ) | 
						
							| 13 | 12 | ad2antll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  - 𝑁  ∈  ℕ0 ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 15 | 1 2 3 | mhmmulg | ⊢ ( ( 𝐹  ∈  ( 𝐺  MndHom  𝐻 )  ∧  - 𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( - 𝑁  ·  𝑋 ) )  =  ( - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 16 | 11 13 14 15 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ ( - 𝑁  ·  𝑋 ) )  =  ( - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁  ·  𝑋 ) ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 18 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐺  ∈  Grp ) | 
						
							| 19 | 10 18 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐺  ∈  Grp ) | 
						
							| 20 |  | nnz | ⊢ ( - 𝑁  ∈  ℕ  →  - 𝑁  ∈  ℤ ) | 
						
							| 21 | 20 | ad2antll | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  - 𝑁  ∈  ℤ ) | 
						
							| 22 | 1 2 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  - 𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 23 | 19 21 14 22 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 24 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 25 |  | eqid | ⊢ ( invg ‘ 𝐻 )  =  ( invg ‘ 𝐻 ) | 
						
							| 26 | 1 24 25 | ghminv | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  ( - 𝑁  ·  𝑋 )  ∈  𝐵 )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁  ·  𝑋 ) ) ) ) | 
						
							| 27 | 10 23 26 | syl2anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁  ·  𝑋 ) ) ) ) | 
						
							| 28 |  | ghmgrp2 | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐻  ∈  Grp ) | 
						
							| 29 | 10 28 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐻  ∈  Grp ) | 
						
							| 30 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 31 | 1 30 | ghmf | ⊢ ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 32 | 10 31 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) | 
						
							| 33 | 32 14 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 34 | 30 3 25 | mulgneg | ⊢ ( ( 𝐻  ∈  Grp  ∧  - 𝑁  ∈  ℤ  ∧  ( 𝐹 ‘ 𝑋 )  ∈  ( Base ‘ 𝐻 ) )  →  ( - - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 35 | 29 21 33 34 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) ) | 
						
							| 36 | 17 27 35 | 3eqtr4d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) )  =  ( - - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 37 | 1 2 24 | mulgneg | ⊢ ( ( 𝐺  ∈  Grp  ∧  - 𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - - 𝑁  ·  𝑋 )  =  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 38 | 19 21 14 37 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - - 𝑁  ·  𝑋 )  =  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) ) | 
						
							| 39 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝑁  ∈  ℝ ) | 
						
							| 40 | 39 | recnd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  𝑁  ∈  ℂ ) | 
						
							| 41 | 40 | negnegd | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  - - 𝑁  =  𝑁 ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - - 𝑁  ·  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 43 | 38 42 | eqtr3d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁  ·  𝑋 ) ) )  =  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 45 | 36 44 | eqtr3d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 46 | 41 | oveq1d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( - - 𝑁  ×  ( 𝐹 ‘ 𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 47 | 45 46 | eqtr3d | ⊢ ( ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  ∧  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 48 |  | simp2 | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  𝑁  ∈  ℤ ) | 
						
							| 49 |  | elznn0nn | ⊢ ( 𝑁  ∈  ℤ  ↔  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 50 | 48 49 | sylib | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ∈  ℕ0  ∨  ( 𝑁  ∈  ℝ  ∧  - 𝑁  ∈  ℕ ) ) ) | 
						
							| 51 | 9 47 50 | mpjaodan | ⊢ ( ( 𝐹  ∈  ( 𝐺  GrpHom  𝐻 )  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑁  ·  𝑋 ) )  =  ( 𝑁  ×  ( 𝐹 ‘ 𝑋 ) ) ) |