Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmulg.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ghmmulg.s |
⊢ · = ( .g ‘ 𝐺 ) |
3 |
|
ghmmulg.t |
⊢ × = ( .g ‘ 𝐻 ) |
4 |
|
ghmmhm |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
5 |
1 2 3
|
mhmmulg |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
6 |
4 5
|
syl3an1 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
8 |
7
|
an32s |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
9 |
8
|
3adantl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
10 |
|
simpl1 |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
11 |
10 4
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ) |
12 |
|
nnnn0 |
⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℕ0 ) |
13 |
12
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℕ0 ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑋 ∈ 𝐵 ) |
15 |
1 2 3
|
mhmmulg |
⊢ ( ( 𝐹 ∈ ( 𝐺 MndHom 𝐻 ) ∧ - 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) = ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
16 |
11 13 14 15
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) = ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
18 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
19 |
10 18
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐺 ∈ Grp ) |
20 |
|
nnz |
⊢ ( - 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
21 |
20
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - 𝑁 ∈ ℤ ) |
22 |
1 2
|
mulgcl |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
23 |
19 21 14 22
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) |
24 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
25 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
26 |
1 24 25
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( - 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) ) |
27 |
10 23 26
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ ( - 𝑁 · 𝑋 ) ) ) ) |
28 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
29 |
10 28
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐻 ∈ Grp ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
31 |
1 30
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
32 |
10 31
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
33 |
32 14
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
34 |
30 3 25
|
mulgneg |
⊢ ( ( 𝐻 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
35 |
29 21 33 34
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) ) |
36 |
17 27 35
|
3eqtr4d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
37 |
1 2 24
|
mulgneg |
⊢ ( ( 𝐺 ∈ Grp ∧ - 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) |
38 |
19 21 14 37
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) |
39 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℝ ) |
40 |
39
|
recnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℂ ) |
41 |
40
|
negnegd |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → - - 𝑁 = 𝑁 ) |
42 |
41
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
43 |
38 42
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
44 |
43
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ ( - 𝑁 · 𝑋 ) ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
45 |
36 44
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) ) |
46 |
41
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( - - 𝑁 × ( 𝐹 ‘ 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
47 |
45 46
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |
48 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 ∈ ℤ ) |
49 |
|
elznn0nn |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
50 |
48 49
|
sylib |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℕ0 ∨ ( 𝑁 ∈ ℝ ∧ - 𝑁 ∈ ℕ ) ) ) |
51 |
9 47 50
|
mpjaodan |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑁 · 𝑋 ) ) = ( 𝑁 × ( 𝐹 ‘ 𝑋 ) ) ) |