Step |
Hyp |
Ref |
Expression |
1 |
|
ghmnsgima.1 |
⊢ 𝑌 = ( Base ‘ 𝑇 ) |
2 |
|
simp1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
3 |
|
nsgsubg |
⊢ ( 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) |
5 |
|
ghmima |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) |
6 |
2 4 5
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ) |
7 |
2
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
8 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑆 ∈ Grp ) |
10 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑧 ∈ ( Base ‘ 𝑆 ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
12 |
11
|
subgss |
⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
13 |
4 12
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝑆 ) ) |
15 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑥 ∈ 𝑈 ) |
16 |
14 15
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
18 |
11 17
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
19 |
9 10 16 18
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
20 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
21 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
22 |
11 20 21
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
23 |
7 19 10 22
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
25 |
11 17 24
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
7 10 16 25
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
28 |
23 27
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
29 |
11 1
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
30 |
2 29
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) |
32 |
31
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
33 |
|
simpl2 |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ) |
34 |
11 17 20
|
nsgconj |
⊢ ( ( 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) |
35 |
33 10 15 34
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) |
36 |
|
fnfvima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑆 ) ∧ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ∈ 𝑈 ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
37 |
32 14 35 36
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
38 |
28 37
|
eqeltrrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) ∧ ( 𝑧 ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑈 ) ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
39 |
38
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) |
40 |
30
|
ffnd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
41 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ) |
42 |
|
id |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → 𝑥 = ( 𝐹 ‘ 𝑧 ) ) |
43 |
41 42
|
oveq12d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
45 |
44
|
ralbidv |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
46 |
45
|
ralrn |
⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
47 |
40 46
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
48 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ran 𝐹 = 𝑌 ) |
49 |
48
|
raleqdv |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ ran 𝐹 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
50 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
51 |
50
|
oveq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) |
52 |
51
|
eleq1d |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
53 |
52
|
ralima |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑆 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑆 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
54 |
40 13 53
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
55 |
54
|
ralbidv |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
56 |
47 49 55
|
3bitr3d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝑆 ) ∀ 𝑥 ∈ 𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
57 |
39 56
|
mpbird |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) |
58 |
1 24 21
|
isnsg3 |
⊢ ( ( 𝐹 “ 𝑈 ) ∈ ( NrmSGrp ‘ 𝑇 ) ↔ ( ( 𝐹 “ 𝑈 ) ∈ ( SubGrp ‘ 𝑇 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ ( 𝐹 “ 𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 ) ∈ ( 𝐹 “ 𝑈 ) ) ) |
59 |
6 57 58
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ ( NrmSGrp ‘ 𝑆 ) ∧ ran 𝐹 = 𝑌 ) → ( 𝐹 “ 𝑈 ) ∈ ( NrmSGrp ‘ 𝑇 ) ) |