| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmnsgima.1 | ⊢ 𝑌  =  ( Base ‘ 𝑇 ) | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 3 |  | nsgsubg | ⊢ ( 𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  𝑈  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 5 |  | ghmima | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( SubGrp ‘ 𝑆 ) )  →  ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 8 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  𝑆  ∈  Grp ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑆  ∈  Grp ) | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑧  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 12 | 11 | subgss | ⊢ ( 𝑈  ∈  ( SubGrp ‘ 𝑆 )  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 4 12 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑈  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑥  ∈  𝑈 ) | 
						
							| 16 | 14 15 | sseldd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 18 | 11 17 | grpcl | ⊢ ( ( 𝑆  ∈  Grp  ∧  𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 19 | 9 10 16 18 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 |  | eqid | ⊢ ( -g ‘ 𝑆 )  =  ( -g ‘ 𝑆 ) | 
						
							| 21 |  | eqid | ⊢ ( -g ‘ 𝑇 )  =  ( -g ‘ 𝑇 ) | 
						
							| 22 | 11 20 21 | ghmsub | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 23 | 7 19 10 22 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) )  =  ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 25 | 11 17 24 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 | 7 10 16 25 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 28 | 23 27 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 29 | 11 1 | ghmf | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) | 
						
							| 30 | 2 29 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ 𝑌 ) | 
						
							| 32 | 31 | ffnd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 33 |  | simpl2 | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  𝑈  ∈  ( NrmSGrp ‘ 𝑆 ) ) | 
						
							| 34 | 11 17 20 | nsgconj | ⊢ ( ( 𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 )  →  ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 )  ∈  𝑈 ) | 
						
							| 35 | 33 10 15 34 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 )  ∈  𝑈 ) | 
						
							| 36 |  | fnfvima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  𝑈  ⊆  ( Base ‘ 𝑆 )  ∧  ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 )  ∈  𝑈 )  →  ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 37 | 32 14 35 36 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( 𝐹 ‘ ( ( 𝑧 ( +g ‘ 𝑆 ) 𝑥 ) ( -g ‘ 𝑆 ) 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 38 | 28 37 | eqeltrrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  ∧  ( 𝑧  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  𝑈 ) )  →  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 39 | 38 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑥  ∈  𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 40 | 30 | ffnd | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 41 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ) | 
						
							| 42 |  | id | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  𝑥  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 43 | 41 42 | oveq12d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  =  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 45 | 44 | ralbidv | ⊢ ( 𝑥  =  ( 𝐹 ‘ 𝑧 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 46 | 45 | ralrn | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑆 )  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 47 | 40 46 | syl | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 48 |  | simp3 | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ran  𝐹  =  𝑌 ) | 
						
							| 49 | 48 | raleqdv | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( ∀ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 50 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 )  =  ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 51 | 50 | oveq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  =  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 52 | 51 | eleq1d | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 )  ↔  ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 53 | 52 | ralima | ⊢ ( ( 𝐹  Fn  ( Base ‘ 𝑆 )  ∧  𝑈  ⊆  ( Base ‘ 𝑆 ) )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑥  ∈  𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 54 | 40 13 53 | syl2anc | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑥  ∈  𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 55 | 54 | ralbidv | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑥  ∈  𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 56 | 47 49 55 | 3bitr3d | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 )  ↔  ∀ 𝑧  ∈  ( Base ‘ 𝑆 ) ∀ 𝑥  ∈  𝑈 ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑧 ) )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 57 | 39 56 | mpbird | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 ) ) | 
						
							| 58 | 1 24 21 | isnsg3 | ⊢ ( ( 𝐹  “  𝑈 )  ∈  ( NrmSGrp ‘ 𝑇 )  ↔  ( ( 𝐹  “  𝑈 )  ∈  ( SubGrp ‘ 𝑇 )  ∧  ∀ 𝑥  ∈  𝑌 ∀ 𝑦  ∈  ( 𝐹  “  𝑈 ) ( ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ( -g ‘ 𝑇 ) 𝑥 )  ∈  ( 𝐹  “  𝑈 ) ) ) | 
						
							| 59 | 6 57 58 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑈  ∈  ( NrmSGrp ‘ 𝑆 )  ∧  ran  𝐹  =  𝑌 )  →  ( 𝐹  “  𝑈 )  ∈  ( NrmSGrp ‘ 𝑇 ) ) |