| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsgsubg | ⊢ ( 𝑉  ∈  ( NrmSGrp ‘ 𝑇 )  →  𝑉  ∈  ( SubGrp ‘ 𝑇 ) ) | 
						
							| 2 |  | ghmpreima | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( SubGrp ‘ 𝑇 ) )  →  ( ◡ 𝐹  “  𝑉 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  →  ( ◡ 𝐹  “  𝑉 )  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 4 |  | ghmgrp1 | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  𝑆  ∈  Grp ) | 
						
							| 5 | 4 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝑆  ∈  Grp ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝑥  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 8 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 11 | 9 10 | ghmf | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 12 | 8 11 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 13 | 12 | ffnd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 14 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑆 )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  𝑉 )  ↔  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑉 ) ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  𝑉 )  ↔  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑉 ) ) ) | 
						
							| 16 | 7 15 | mpbid | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑉 ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 18 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 19 | 9 18 | grpcl | ⊢ ( ( 𝑆  ∈  Grp  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 20 | 5 6 17 19 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 21 |  | eqid | ⊢ ( -g ‘ 𝑆 )  =  ( -g ‘ 𝑆 ) | 
						
							| 22 | 9 21 | grpsubcl | ⊢ ( ( 𝑆  ∈  Grp  ∧  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 5 20 6 22 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 24 |  | eqid | ⊢ ( -g ‘ 𝑇 )  =  ( -g ‘ 𝑇 ) | 
						
							| 25 | 9 21 24 | ghmsub | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 26 | 8 20 6 25 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  =  ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( +g ‘ 𝑇 )  =  ( +g ‘ 𝑇 ) | 
						
							| 28 | 9 18 27 | ghmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 | 8 6 17 28 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 31 | 26 30 | eqtrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  =  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 32 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) ) | 
						
							| 33 | 12 6 | ffvelcdmd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 34 | 16 | simprd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  𝑉 ) | 
						
							| 35 | 10 27 24 | nsgconj | ⊢ ( ( 𝑉  ∈  ( NrmSGrp ‘ 𝑇 )  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  𝑉 )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) )  ∈  𝑉 ) | 
						
							| 36 | 32 33 34 35 | syl3anc | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) )  ∈  𝑉 ) | 
						
							| 37 | 31 36 | eqeltrd | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  ∈  𝑉 ) | 
						
							| 38 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑆 )  →  ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( ◡ 𝐹  “  𝑉 )  ↔  ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  ∈  𝑉 ) ) ) | 
						
							| 39 | 13 38 | syl | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( ◡ 𝐹  “  𝑉 )  ↔  ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) )  ∈  𝑉 ) ) ) | 
						
							| 40 | 23 37 39 | mpbir2and | ⊢ ( ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  ∧  ( 𝑥  ∈  ( Base ‘ 𝑆 )  ∧  𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ) )  →  ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 41 | 40 | ralrimivva | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( ◡ 𝐹  “  𝑉 ) ) | 
						
							| 42 | 9 18 21 | isnsg3 | ⊢ ( ( ◡ 𝐹  “  𝑉 )  ∈  ( NrmSGrp ‘ 𝑆 )  ↔  ( ( ◡ 𝐹  “  𝑉 )  ∈  ( SubGrp ‘ 𝑆 )  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝑆 ) ∀ 𝑦  ∈  ( ◡ 𝐹  “  𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 )  ∈  ( ◡ 𝐹  “  𝑉 ) ) ) | 
						
							| 43 | 3 41 42 | sylanbrc | ⊢ ( ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  ∧  𝑉  ∈  ( NrmSGrp ‘ 𝑇 ) )  →  ( ◡ 𝐹  “  𝑉 )  ∈  ( NrmSGrp ‘ 𝑆 ) ) |