Step |
Hyp |
Ref |
Expression |
1 |
|
nsgsubg |
⊢ ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) → 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) |
2 |
|
ghmpreima |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ) |
4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑆 ∈ Grp ) |
6 |
|
simprl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
8 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
11 |
9 10
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
12 |
8 11
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
13 |
12
|
ffnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) ) |
14 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) ) |
16 |
7 15
|
mpbid |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) ) |
17 |
16
|
simpld |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
19 |
9 18
|
grpcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
20 |
5 6 17 19
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
21 |
|
eqid |
⊢ ( -g ‘ 𝑆 ) = ( -g ‘ 𝑆 ) |
22 |
9 21
|
grpsubcl |
⊢ ( ( 𝑆 ∈ Grp ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
23 |
5 20 6 22
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
24 |
|
eqid |
⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) |
25 |
9 21 24
|
ghmsub |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
26 |
8 20 6 25
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
28 |
9 18 27
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
29 |
8 6 17 28
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
30 |
29
|
oveq1d |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
31 |
26 30
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ) |
32 |
|
simplr |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) |
33 |
12 6
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
34 |
16
|
simprd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) |
35 |
10 27 24
|
nsgconj |
⊢ ( ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑉 ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑉 ) |
36 |
32 33 34 35
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑥 ) ) ∈ 𝑉 ) |
37 |
31 36
|
eqeltrd |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) |
38 |
|
elpreima |
⊢ ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) ) |
39 |
13 38
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ↔ ( ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) ) |
40 |
23 37 39
|
mpbir2and |
⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
41 |
40
|
ralrimivva |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) |
42 |
9 18 21
|
isnsg3 |
⊢ ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ↔ ( ( ◡ 𝐹 “ 𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( ◡ 𝐹 “ 𝑉 ) ( ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ( -g ‘ 𝑆 ) 𝑥 ) ∈ ( ◡ 𝐹 “ 𝑉 ) ) ) |
43 |
3 41 42
|
sylanbrc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ 𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |