| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ghmpropd.a | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐽 ) ) | 
						
							| 2 |  | ghmpropd.b | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝐾 ) ) | 
						
							| 3 |  | ghmpropd.c | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐿 ) ) | 
						
							| 4 |  | ghmpropd.d | ⊢ ( 𝜑  →  𝐶  =  ( Base ‘ 𝑀 ) ) | 
						
							| 5 |  | ghmpropd.e | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝐽 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
						
							| 6 |  | ghmpropd.f | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | 
						
							| 7 | 1 3 5 | grppropd | ⊢ ( 𝜑  →  ( 𝐽  ∈  Grp  ↔  𝐿  ∈  Grp ) ) | 
						
							| 8 | 2 4 6 | grppropd | ⊢ ( 𝜑  →  ( 𝐾  ∈  Grp  ↔  𝑀  ∈  Grp ) ) | 
						
							| 9 | 7 8 | anbi12d | ⊢ ( 𝜑  →  ( ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp )  ↔  ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp ) ) ) | 
						
							| 10 | 1 2 3 4 5 6 | mhmpropd | ⊢ ( 𝜑  →  ( 𝐽  MndHom  𝐾 )  =  ( 𝐿  MndHom  𝑀 ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  MndHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  MndHom  𝑀 ) ) ) | 
						
							| 12 | 9 11 | anbi12d | ⊢ ( 𝜑  →  ( ( ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp )  ∧  𝑓  ∈  ( 𝐽  MndHom  𝐾 ) )  ↔  ( ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp )  ∧  𝑓  ∈  ( 𝐿  MndHom  𝑀 ) ) ) ) | 
						
							| 13 |  | ghmgrp1 | ⊢ ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  →  𝐽  ∈  Grp ) | 
						
							| 14 |  | ghmgrp2 | ⊢ ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  →  𝐾  ∈  Grp ) | 
						
							| 15 | 13 14 | jca | ⊢ ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  →  ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp ) ) | 
						
							| 16 |  | ghmmhmb | ⊢ ( ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp )  →  ( 𝐽  GrpHom  𝐾 )  =  ( 𝐽  MndHom  𝐾 ) ) | 
						
							| 17 | 16 | eleq2d | ⊢ ( ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp )  →  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ↔  𝑓  ∈  ( 𝐽  MndHom  𝐾 ) ) ) | 
						
							| 18 | 15 17 | biadanii | ⊢ ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ↔  ( ( 𝐽  ∈  Grp  ∧  𝐾  ∈  Grp )  ∧  𝑓  ∈  ( 𝐽  MndHom  𝐾 ) ) ) | 
						
							| 19 |  | ghmgrp1 | ⊢ ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  →  𝐿  ∈  Grp ) | 
						
							| 20 |  | ghmgrp2 | ⊢ ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  →  𝑀  ∈  Grp ) | 
						
							| 21 | 19 20 | jca | ⊢ ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  →  ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp ) ) | 
						
							| 22 |  | ghmmhmb | ⊢ ( ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp )  →  ( 𝐿  GrpHom  𝑀 )  =  ( 𝐿  MndHom  𝑀 ) ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp )  →  ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ↔  𝑓  ∈  ( 𝐿  MndHom  𝑀 ) ) ) | 
						
							| 24 | 21 23 | biadanii | ⊢ ( 𝑓  ∈  ( 𝐿  GrpHom  𝑀 )  ↔  ( ( 𝐿  ∈  Grp  ∧  𝑀  ∈  Grp )  ∧  𝑓  ∈  ( 𝐿  MndHom  𝑀 ) ) ) | 
						
							| 25 | 12 18 24 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝐽  GrpHom  𝐾 )  ↔  𝑓  ∈  ( 𝐿  GrpHom  𝑀 ) ) ) | 
						
							| 26 | 25 | eqrdv | ⊢ ( 𝜑  →  ( 𝐽  GrpHom  𝐾 )  =  ( 𝐿  GrpHom  𝑀 ) ) |