Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
ghmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
3 |
|
ghmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
ghmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
ghmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
ghmqusker.s |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
7 |
1 2 3 4 5
|
ghmquskerlem3 |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ) |
8 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
9 |
2 8
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
10 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐺 ∈ Grp ) |
11 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
13 |
3 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
14 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
16 |
15
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
19 |
17 18
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
21 |
20
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
22 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
24 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
25 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
26 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
27 |
24 25 26 9
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
28 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
29 |
17 28
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
30 |
13 14 29
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
31 |
30
|
qsss |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
32 |
27 31
|
eqsstrrd |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) ) |
33 |
32
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) ) |
34 |
33
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) ) |
35 |
34
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
39 |
38
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
40 |
39
|
biimpa |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
41 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
42 |
41
|
biimpar |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) = 0 ) ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
43 |
23 37 40 42
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
44 |
43 3
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ 𝐾 ) |
45 |
28
|
eqg0el |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ↔ 𝑥 ∈ 𝐾 ) ) |
46 |
45
|
biimpar |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝐾 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
47 |
10 16 44 46
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
48 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
50 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
51 |
49 50
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
52 |
51
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
53 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑥 ∈ 𝑟 ) |
54 |
|
qsel |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥 ∈ 𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
55 |
48 52 53 54
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
56 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
57 |
17 28 56
|
eqgid |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
58 |
15 57
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
59 |
58
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 ) |
60 |
47 55 59
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) |
61 |
4 56
|
qus0 |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
62 |
13 61
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
63 |
62
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g ‘ 𝑄 ) ) |
65 |
60 64
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) → 𝑟 = ( 0g ‘ 𝑄 ) ) |
66 |
63
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
67 |
66
|
biimpar |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) |
68 |
67
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐽 ‘ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) ) |
69 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
71 |
17 56
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
72 |
9 71
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
73 |
72
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
74 |
1 70 3 4 5 73
|
ghmquskerlem1 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) ) |
75 |
56 1
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
76 |
2 75
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
77 |
76
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐹 ‘ ( 0g ‘ 𝐺 ) ) = 0 ) |
78 |
68 74 77
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) = 0 ) |
79 |
65 78
|
impbida |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
80 |
1 69 3 4 5 49
|
ghmquskerlem2 |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ 𝑟 ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
81 |
79 80
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 0 ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
82 |
81
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) ) ) |
83 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 = ( 0g ‘ 𝑄 ) ) |
84 |
4
|
qusgrp |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp ) |
85 |
13 84
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ Grp ) |
86 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
87 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
88 |
86 87
|
grpidcl |
⊢ ( 𝑄 ∈ Grp → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
89 |
85 88
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
90 |
89
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → ( 0g ‘ 𝑄 ) ∈ ( Base ‘ 𝑄 ) ) |
91 |
83 90
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) |
92 |
91
|
ex |
⊢ ( 𝜑 → ( 𝑟 = ( 0g ‘ 𝑄 ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) ) |
93 |
92
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑟 = ( 0g ‘ 𝑄 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g ‘ 𝑄 ) ) ) ) |
94 |
82 93
|
bitr4d |
⊢ ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
95 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
96 |
95
|
imaexd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹 “ 𝑞 ) ∈ V ) |
97 |
96
|
uniexd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( Base ‘ 𝑄 ) ) → ∪ ( 𝐹 “ 𝑞 ) ∈ V ) |
98 |
5
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) ) |
99 |
22 36
|
fnfvelrnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
100 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ran 𝐹 = ( Base ‘ 𝐻 ) ) |
101 |
99 100
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐻 ) ) |
102 |
38 101
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥 ∈ 𝑟 ) ∧ ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
103 |
102 80
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ 𝑟 ) ∈ ( Base ‘ 𝐻 ) ) |
104 |
97 98 103
|
fmpt2d |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) ) |
105 |
104
|
ffnd |
⊢ ( 𝜑 → 𝐽 Fn ( Base ‘ 𝑄 ) ) |
106 |
|
fniniseg |
⊢ ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ) ) |
107 |
105 106
|
syl |
⊢ ( 𝜑 → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽 ‘ 𝑟 ) = 0 ) ) ) |
108 |
|
velsn |
⊢ ( 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) |
109 |
108
|
a1i |
⊢ ( 𝜑 → ( 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ↔ 𝑟 = ( 0g ‘ 𝑄 ) ) ) |
110 |
94 107 109
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑟 ∈ ( ◡ 𝐽 “ { 0 } ) ↔ 𝑟 ∈ { ( 0g ‘ 𝑄 ) } ) ) |
111 |
110
|
eqrdv |
⊢ ( 𝜑 → ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) |
112 |
86 18 87 1
|
kerf1ghm |
⊢ ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ↔ ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) ) |
113 |
112
|
biimpar |
⊢ ( ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ ( ◡ 𝐽 “ { 0 } ) = { ( 0g ‘ 𝑄 ) } ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ) |
114 |
7 111 113
|
syl2anc |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ) |
115 |
|
f1f1orn |
⊢ ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ) |
116 |
114 115
|
syl |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ) |
117 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
118 |
|
ovex |
⊢ ( 𝐺 ~QG 𝐾 ) ∈ V |
119 |
118
|
ecelqsi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
120 |
117 119
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
121 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
122 |
120 121
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
123 |
|
elqsi |
⊢ ( 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
124 |
51 123
|
syl |
⊢ ( ( 𝜑 ∧ 𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
125 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
126 |
125
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
127 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
128 |
1 127 3 4 5 117
|
ghmquskerlem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
130 |
126 129
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
131 |
130
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑟 ) = ( 𝐹 ‘ 𝑥 ) ) |
132 |
131
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐽 ‘ 𝑟 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
133 |
122 124 132
|
rexxfrd2 |
⊢ ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
134 |
|
fvelrnb |
⊢ ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ) ) |
135 |
105 134
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽 ‘ 𝑟 ) = 𝑦 ) ) |
136 |
|
fvelrnb |
⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
137 |
21 136
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
138 |
133 135 137
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ 𝑦 ∈ ran 𝐽 ) ) |
139 |
138
|
eqrdv |
⊢ ( 𝜑 → ran 𝐹 = ran 𝐽 ) |
140 |
139 6
|
eqtr3d |
⊢ ( 𝜑 → ran 𝐽 = ( Base ‘ 𝐻 ) ) |
141 |
140
|
f1oeq3d |
⊢ ( 𝜑 → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 ↔ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
142 |
116 141
|
mpbid |
⊢ ( 𝜑 → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) |
143 |
86 18
|
isgim |
⊢ ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) ) |
144 |
7 142 143
|
sylanbrc |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ) |