Metamath Proof Explorer


Theorem ghmqusker

Description: A surjective group homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0 = ( 0g𝐻 )
ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
ghmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
Assertion ghmqusker ( 𝜑𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 = ( 0g𝐻 )
2 ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 ghmqusker.s ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐻 ) )
7 1 2 3 4 5 ghmquskerlem3 ( 𝜑𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) )
8 ghmgrp1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp )
9 2 8 syl ( 𝜑𝐺 ∈ Grp )
10 9 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝐺 ∈ Grp )
11 1 ghmker ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) )
12 2 11 syl ( 𝜑 → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) )
13 3 12 eqeltrid ( 𝜑𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) )
14 nsgsubg ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
15 13 14 syl ( 𝜑𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
16 15 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
17 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
18 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
19 17 18 ghmf ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
20 2 19 syl ( 𝜑𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
21 20 ffnd ( 𝜑𝐹 Fn ( Base ‘ 𝐺 ) )
22 21 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) )
23 22 adantr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝐹 Fn ( Base ‘ 𝐺 ) )
24 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) )
25 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
26 ovexd ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V )
27 24 25 26 9 qusbas ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
28 eqid ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 )
29 17 28 eqger ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
30 13 14 29 3syl ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
31 30 qsss ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
32 27 31 eqsstrrd ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
33 32 sselda ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) )
34 33 elpwid ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) )
35 34 sselda ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
36 35 adantr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
37 36 adantr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
38 simpr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
39 38 eqeq1d ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( ( 𝐽𝑟 ) = 0 ↔ ( 𝐹𝑥 ) = 0 ) )
40 39 biimpa ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → ( 𝐹𝑥 ) = 0 )
41 fniniseg ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑥 ∈ ( 𝐹 “ { 0 } ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹𝑥 ) = 0 ) ) )
42 41 biimpar ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹𝑥 ) = 0 ) ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
43 23 37 40 42 syl12anc ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑥 ∈ ( 𝐹 “ { 0 } ) )
44 43 3 eleqtrrdi ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑥𝐾 )
45 28 eqg0el ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾𝑥𝐾 ) )
46 45 biimpar ( ( ( 𝐺 ∈ Grp ∧ 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥𝐾 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 )
47 10 16 44 46 syl21anc ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) = 𝐾 )
48 30 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
49 simpr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
50 27 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
51 49 50 eleqtrrd ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
52 51 ad3antrrr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
53 simpllr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑥𝑟 )
54 qsel ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
55 48 52 53 54 syl3anc ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
56 eqid ( 0g𝐺 ) = ( 0g𝐺 )
57 17 28 56 eqgid ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 )
58 15 57 syl ( 𝜑 → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 )
59 58 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = 𝐾 )
60 47 55 59 3eqtr4d ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑟 = [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) )
61 4 56 qus0 ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g𝑄 ) )
62 13 61 syl ( 𝜑 → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g𝑄 ) )
63 62 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g𝑄 ) )
64 63 adantr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) = ( 0g𝑄 ) )
65 60 64 eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ ( 𝐽𝑟 ) = 0 ) → 𝑟 = ( 0g𝑄 ) )
66 63 eqeq2d ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝑟 = [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ↔ 𝑟 = ( 0g𝑄 ) ) )
67 66 biimpar ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → 𝑟 = [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) )
68 67 fveq2d ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → ( 𝐽𝑟 ) = ( 𝐽 ‘ [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) )
69 2 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
70 69 ad3antrrr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
71 17 56 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ ( Base ‘ 𝐺 ) )
72 9 71 syl ( 𝜑 → ( 0g𝐺 ) ∈ ( Base ‘ 𝐺 ) )
73 72 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → ( 0g𝐺 ) ∈ ( Base ‘ 𝐺 ) )
74 1 70 3 4 5 73 ghmquskerlem1 ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → ( 𝐽 ‘ [ ( 0g𝐺 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 0g𝐺 ) ) )
75 56 1 ghmid ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 ‘ ( 0g𝐺 ) ) = 0 )
76 2 75 syl ( 𝜑 → ( 𝐹 ‘ ( 0g𝐺 ) ) = 0 )
77 76 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → ( 𝐹 ‘ ( 0g𝐺 ) ) = 0 )
78 68 74 77 3eqtrd ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑟 = ( 0g𝑄 ) ) → ( 𝐽𝑟 ) = 0 )
79 65 78 impbida ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( ( 𝐽𝑟 ) = 0𝑟 = ( 0g𝑄 ) ) )
80 1 69 3 4 5 49 ghmquskerlem2 ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥𝑟 ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
81 79 80 r19.29a ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( ( 𝐽𝑟 ) = 0𝑟 = ( 0g𝑄 ) ) )
82 81 pm5.32da ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽𝑟 ) = 0 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g𝑄 ) ) ) )
83 simpr ( ( 𝜑𝑟 = ( 0g𝑄 ) ) → 𝑟 = ( 0g𝑄 ) )
84 4 qusgrp ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp )
85 13 84 syl ( 𝜑𝑄 ∈ Grp )
86 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
87 eqid ( 0g𝑄 ) = ( 0g𝑄 )
88 86 87 grpidcl ( 𝑄 ∈ Grp → ( 0g𝑄 ) ∈ ( Base ‘ 𝑄 ) )
89 85 88 syl ( 𝜑 → ( 0g𝑄 ) ∈ ( Base ‘ 𝑄 ) )
90 89 adantr ( ( 𝜑𝑟 = ( 0g𝑄 ) ) → ( 0g𝑄 ) ∈ ( Base ‘ 𝑄 ) )
91 83 90 eqeltrd ( ( 𝜑𝑟 = ( 0g𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
92 91 ex ( 𝜑 → ( 𝑟 = ( 0g𝑄 ) → 𝑟 ∈ ( Base ‘ 𝑄 ) ) )
93 92 pm4.71rd ( 𝜑 → ( 𝑟 = ( 0g𝑄 ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑟 = ( 0g𝑄 ) ) ) )
94 82 93 bitr4d ( 𝜑 → ( ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽𝑟 ) = 0 ) ↔ 𝑟 = ( 0g𝑄 ) ) )
95 2 adantr ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
96 95 imaexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
97 96 uniexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
98 5 a1i ( 𝜑𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) ) )
99 22 36 fnfvelrnd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
100 6 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ran 𝐹 = ( Base ‘ 𝐻 ) )
101 99 100 eleqtrd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝐻 ) )
102 38 101 eqeltrd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
103 102 80 r19.29a ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
104 97 98 103 fmpt2d ( 𝜑𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) )
105 104 ffnd ( 𝜑𝐽 Fn ( Base ‘ 𝑄 ) )
106 fniniseg ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑟 ∈ ( 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽𝑟 ) = 0 ) ) )
107 105 106 syl ( 𝜑 → ( 𝑟 ∈ ( 𝐽 “ { 0 } ) ↔ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝐽𝑟 ) = 0 ) ) )
108 velsn ( 𝑟 ∈ { ( 0g𝑄 ) } ↔ 𝑟 = ( 0g𝑄 ) )
109 108 a1i ( 𝜑 → ( 𝑟 ∈ { ( 0g𝑄 ) } ↔ 𝑟 = ( 0g𝑄 ) ) )
110 94 107 109 3bitr4d ( 𝜑 → ( 𝑟 ∈ ( 𝐽 “ { 0 } ) ↔ 𝑟 ∈ { ( 0g𝑄 ) } ) )
111 110 eqrdv ( 𝜑 → ( 𝐽 “ { 0 } ) = { ( 0g𝑄 ) } )
112 86 18 87 1 kerf1ghm ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) ↔ ( 𝐽 “ { 0 } ) = { ( 0g𝑄 ) } ) )
113 112 biimpar ( ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ ( 𝐽 “ { 0 } ) = { ( 0g𝑄 ) } ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) )
114 7 111 113 syl2anc ( 𝜑𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) )
115 f1f1orn ( 𝐽 : ( Base ‘ 𝑄 ) –1-1→ ( Base ‘ 𝐻 ) → 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 )
116 114 115 syl ( 𝜑𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽 )
117 simpr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
118 ovex ( 𝐺 ~QG 𝐾 ) ∈ V
119 118 ecelqsi ( 𝑥 ∈ ( Base ‘ 𝐺 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
120 117 119 syl ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
121 27 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
122 120 121 eleqtrd ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) )
123 elqsi ( 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
124 51 123 syl ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
125 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
126 125 fveq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽𝑟 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
127 2 adantr ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
128 1 127 3 4 5 117 ghmquskerlem1 ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹𝑥 ) )
129 128 adantr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹𝑥 ) )
130 126 129 eqtrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
131 130 3impa ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
132 131 eqeq1d ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐽𝑟 ) = 𝑦 ↔ ( 𝐹𝑥 ) = 𝑦 ) )
133 122 124 132 rexxfrd2 ( 𝜑 → ( ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽𝑟 ) = 𝑦 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹𝑥 ) = 𝑦 ) )
134 fvelrnb ( 𝐽 Fn ( Base ‘ 𝑄 ) → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽𝑟 ) = 𝑦 ) )
135 105 134 syl ( 𝜑 → ( 𝑦 ∈ ran 𝐽 ↔ ∃ 𝑟 ∈ ( Base ‘ 𝑄 ) ( 𝐽𝑟 ) = 𝑦 ) )
136 fvelrnb ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹𝑥 ) = 𝑦 ) )
137 21 136 syl ( 𝜑 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) ( 𝐹𝑥 ) = 𝑦 ) )
138 133 135 137 3bitr4rd ( 𝜑 → ( 𝑦 ∈ ran 𝐹𝑦 ∈ ran 𝐽 ) )
139 138 eqrdv ( 𝜑 → ran 𝐹 = ran 𝐽 )
140 139 6 eqtr3d ( 𝜑 → ran 𝐽 = ( Base ‘ 𝐻 ) )
141 140 f1oeq3d ( 𝜑 → ( 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ran 𝐽𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) )
142 116 141 mpbid ( 𝜑𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) )
143 86 18 isgim ( 𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) ↔ ( 𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) ∧ 𝐽 : ( Base ‘ 𝑄 ) –1-1-onto→ ( Base ‘ 𝐻 ) ) )
144 7 142 143 sylanbrc ( 𝜑𝐽 ∈ ( 𝑄 GrpIso 𝐻 ) )