Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
ghmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
3 |
|
ghmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
ghmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
ghmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
ghmquskerlem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
7 |
|
imaeq2 |
⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) → ( 𝐹 “ 𝑞 ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ) |
8 |
7
|
unieqd |
⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) → ∪ ( 𝐹 “ 𝑞 ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ) |
9 |
|
ovex |
⊢ ( 𝐺 ~QG 𝐾 ) ∈ V |
10 |
9
|
ecelqsi |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
12 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
14 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
15 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
16 |
2 15
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
17 |
12 13 14 16
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
18 |
11 17
|
eleqtrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
19 |
2
|
imaexd |
⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
20 |
19
|
uniexd |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
21 |
5 8 18 20
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
24 |
22 23
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
26 |
25
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
27 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
28 |
2 27
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
29 |
3 28
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
30 |
|
nsgsubg |
⊢ ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
31 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
32 |
22 31
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
33 |
29 30 32
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
34 |
33
|
ecss |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ⊆ ( Base ‘ 𝐺 ) ) |
35 |
26 34
|
fvelimabd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ↔ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
37 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
38 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
39 |
37 15
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐺 ∈ Grp ) |
40 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
41 |
22 38 39 40
|
grpinvcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) |
42 |
34
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
43 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
44 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
45 |
22 43 44
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
46 |
37 41 42 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
47 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
48 |
22
|
subgss |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 ⊆ ( Base ‘ 𝐺 ) ) |
49 |
29 30 48
|
3syl |
⊢ ( 𝜑 → 𝐾 ⊆ ( Base ‘ 𝐺 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐾 ⊆ ( Base ‘ 𝐺 ) ) |
51 |
|
vex |
⊢ 𝑧 ∈ V |
52 |
|
elecg |
⊢ ( ( 𝑧 ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ↔ 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) ) |
53 |
51 52
|
mpan |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ↔ 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) ) |
54 |
53
|
biimpa |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) |
55 |
6 54
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) |
56 |
22 38 43 31
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐾 ) ) ) |
57 |
56
|
biimpa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐾 ) ) |
58 |
57
|
simp3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝐾 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝐾 ) 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐾 ) |
59 |
39 50 55 58
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝐾 ) |
60 |
59 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
61 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) ) |
62 |
61
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
63 |
47 60 62
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
64 |
63
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) |
65 |
46 64
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ) |
66 |
65
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) ) |
67 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
68 |
22 38 67
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
69 |
37 40 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
71 |
70
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
72 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
73 |
37 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐻 ∈ Grp ) |
74 |
37 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
75 |
74 40
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
76 |
74 42
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
77 |
23 44 67
|
grpasscan1 |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
78 |
73 75 76 77
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
79 |
71 78
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
80 |
23 44 1
|
grprid |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
81 |
73 75 80
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
82 |
66 79 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
84 |
36 83
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
85 |
84
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
86 |
|
ecref |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) |
87 |
33 6 86
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) |
89 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑦 ) ) |
90 |
89
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) ∧ 𝑧 = 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑦 ) ) |
91 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
92 |
91
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑦 ) |
93 |
88 90 92
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
94 |
85 93
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) ) |
95 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
96 |
94 95
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
97 |
35 96
|
bitrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
98 |
97
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) = { ( 𝐹 ‘ 𝑋 ) } ) |
99 |
98
|
unieqd |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) = ∪ { ( 𝐹 ‘ 𝑋 ) } ) |
100 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
101 |
100
|
unisn |
⊢ ∪ { ( 𝐹 ‘ 𝑋 ) } = ( 𝐹 ‘ 𝑋 ) |
102 |
99 101
|
eqtrdi |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
103 |
21 102
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑋 ) ) |