Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
ghmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
3 |
|
ghmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
ghmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
5 |
|
ghmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
ghmquskerlem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) |
7 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
9 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
10 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
12 |
7 8 9 11
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
13 |
6 12
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) |
14 |
|
elqsg |
⊢ ( 𝑌 ∈ ( Base ‘ 𝑄 ) → ( 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( 𝑌 ∈ ( Base ‘ 𝑄 ) ∧ 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
16 |
6 13 15
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
17 |
1
|
ghmker |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) ) |
18 |
|
nsgsubg |
⊢ ( ( ◡ 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
2 17 18
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 0 } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
3 19
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
22 |
|
eqid |
⊢ ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 ) |
23 |
21 22
|
eqger |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
24 |
20 23
|
syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ) |
26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
27 |
|
ecref |
⊢ ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
28 |
25 26 27
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
29 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
30 |
28 29
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝑥 ∈ 𝑌 ) |
31 |
29
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
32 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
33 |
1 32 3 4 5 26
|
ghmquskerlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
34 |
31 33
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
35 |
30 34
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
36 |
35
|
expl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
37 |
36
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
38 |
16 37
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |