Metamath Proof Explorer


Theorem ghmquskerlem3

Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses ghmqusker.1 0 = ( 0g𝐻 )
ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
Assertion ghmquskerlem3 ( 𝜑𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 = ( 0g𝐻 )
2 ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
7 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
8 eqid ( +g𝑄 ) = ( +g𝑄 )
9 eqid ( +g𝐻 ) = ( +g𝐻 )
10 1 ghmker ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) )
11 2 10 syl ( 𝜑 → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝐺 ) )
12 3 11 eqeltrid ( 𝜑𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) )
13 4 qusgrp ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp )
14 12 13 syl ( 𝜑𝑄 ∈ Grp )
15 ghmrn ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) )
16 subgrcl ( ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) → 𝐻 ∈ Grp )
17 2 15 16 3syl ( 𝜑𝐻 ∈ Grp )
18 2 adantr ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
19 18 imaexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
20 19 uniexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
21 5 a1i ( 𝜑𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) ) )
22 simpr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
23 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
24 23 7 ghmf ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
25 2 24 syl ( 𝜑𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
26 25 frnd ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) )
27 26 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) )
28 25 ffnd ( 𝜑𝐹 Fn ( Base ‘ 𝐺 ) )
29 28 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) )
30 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) )
31 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
32 ovexd ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V )
33 ghmgrp1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp )
34 2 33 syl ( 𝜑𝐺 ∈ Grp )
35 30 31 32 34 qusbas ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
36 nsgsubg ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) )
37 eqid ( 𝐺 ~QG 𝐾 ) = ( 𝐺 ~QG 𝐾 )
38 23 37 eqger ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
39 12 36 38 3syl ( 𝜑 → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
40 39 qsss ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
41 35 40 eqsstrrd ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
42 41 sselda ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) )
43 42 elpwid ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) )
44 43 sselda ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
45 44 adantr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
46 29 45 fnfvelrnd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
47 27 46 sseldd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝐻 ) )
48 22 47 eqeltrd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
49 2 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
50 simpr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
51 1 49 3 4 5 50 ghmquskerlem2 ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥𝑟 ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
52 48 51 r19.29a ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
53 20 21 52 fmpt2d ( 𝜑𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) )
54 39 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) )
55 50 ad5antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
56 35 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
57 55 56 eleqtrrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
58 simp-4r ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑥𝑟 )
59 qsel ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑥𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
60 54 57 58 59 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
61 simp-5r ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) )
62 61 56 eleqtrrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) )
63 simplr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑦𝑠 )
64 qsel ( ( ( 𝐺 ~QG 𝐾 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝐾 ) ) ∧ 𝑦𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) )
65 54 62 63 64 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) )
66 60 65 oveq12d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑟 ( +g𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) )
67 12 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) )
68 43 ad5antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) )
69 68 58 sseldd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
70 41 sselda ( ( 𝜑𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) )
71 70 elpwid ( ( 𝜑𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
72 71 adantlr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
73 72 ad4antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
74 73 63 sseldd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
75 eqid ( +g𝐺 ) = ( +g𝐺 )
76 4 23 75 8 qusadd ( ( 𝐾 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) )
77 67 69 74 76 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝐾 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) )
78 66 77 eqtrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑟 ( +g𝑄 ) 𝑠 ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) )
79 78 fveq2d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( 𝐽 ‘ [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) )
80 2 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
81 80 33 syl ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝐺 ∈ Grp )
82 23 75 81 69 74 grpcld ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
83 1 80 3 4 5 82 ghmquskerlem1 ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
84 23 75 9 ghmlin ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
85 80 69 74 84 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
86 79 83 85 3eqtrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
87 simpllr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
88 simpr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽𝑠 ) = ( 𝐹𝑦 ) )
89 87 88 oveq12d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
90 86 89 eqtr4d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
91 2 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
92 simpllr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) )
93 1 91 3 4 5 92 ghmquskerlem2 ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ∃ 𝑦𝑠 ( 𝐽𝑠 ) = ( 𝐹𝑦 ) )
94 90 93 r19.29a ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
95 51 adantr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥𝑟 ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
96 94 95 r19.29a ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
97 96 anasss ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
98 6 7 8 9 14 17 53 97 isghmd ( 𝜑𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) )