Metamath Proof Explorer


Theorem ghmqusnsg

Description: The mapping H induced by a surjective group homomorphism F from the quotient group Q over a normal subgroup N of F 's kernel K is a group isomorphism. In this case, one says that F factors through Q , which is also called the factor group. (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 = ( 0g𝐻 )
ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
ghmqusnsg.n ( 𝜑𝑁𝐾 )
ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
Assertion ghmqusnsg ( 𝜑𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) )

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 = ( 0g𝐻 )
2 ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
5 ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 ghmqusnsg.n ( 𝜑𝑁𝐾 )
7 ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
8 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
9 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
10 eqid ( +g𝑄 ) = ( +g𝑄 )
11 eqid ( +g𝐻 ) = ( +g𝐻 )
12 4 qusgrp ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑄 ∈ Grp )
13 7 12 syl ( 𝜑𝑄 ∈ Grp )
14 ghmrn ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) )
15 subgrcl ( ran 𝐹 ∈ ( SubGrp ‘ 𝐻 ) → 𝐻 ∈ Grp )
16 2 14 15 3syl ( 𝜑𝐻 ∈ Grp )
17 2 adantr ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
18 17 imaexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
19 18 uniexd ( ( 𝜑𝑞 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐹𝑞 ) ∈ V )
20 5 a1i ( 𝜑𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) ) )
21 simpr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
22 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
23 22 9 ghmf ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
24 2 23 syl ( 𝜑𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
25 24 frnd ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) )
26 25 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ran 𝐹 ⊆ ( Base ‘ 𝐻 ) )
27 24 ffnd ( 𝜑𝐹 Fn ( Base ‘ 𝐺 ) )
28 27 ad3antrrr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) )
29 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) )
30 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
31 ovexd ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V )
32 ghmgrp1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp )
33 2 32 syl ( 𝜑𝐺 ∈ Grp )
34 29 30 31 33 qusbas ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
35 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
36 eqid ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 )
37 22 36 eqger ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
38 7 35 37 3syl ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
39 38 qsss ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
40 34 39 eqsstrrd ( 𝜑 → ( Base ‘ 𝑄 ) ⊆ 𝒫 ( Base ‘ 𝐺 ) )
41 40 sselda ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ 𝒫 ( Base ‘ 𝐺 ) )
42 41 elpwid ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) )
43 42 sselda ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
44 43 adantr ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
45 28 44 fnfvelrnd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ran 𝐹 )
46 26 45 sseldd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝐻 ) )
47 21 46 eqeltrd ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
48 2 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
49 6 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑁𝐾 )
50 7 adantr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
51 simpr ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
52 1 48 3 4 5 49 50 51 ghmqusnsglem2 ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥𝑟 ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
53 47 52 r19.29a ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽𝑟 ) ∈ ( Base ‘ 𝐻 ) )
54 19 20 53 fmpt2d ( 𝜑𝐽 : ( Base ‘ 𝑄 ) ⟶ ( Base ‘ 𝐻 ) )
55 38 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
56 51 ad5antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ∈ ( Base ‘ 𝑄 ) )
57 34 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
58 56 57 eleqtrrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) )
59 simp-4r ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑥𝑟 )
60 qsel ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑟 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑥𝑟 ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
61 55 58 59 60 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
62 simp-5r ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) )
63 62 57 eleqtrrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) )
64 simplr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑦𝑠 )
65 qsel ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑠 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ∧ 𝑦𝑠 ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) )
66 55 63 64 65 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 = [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) )
67 61 66 oveq12d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑟 ( +g𝑄 ) 𝑠 ) = ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) )
68 7 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
69 42 ad5antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑟 ⊆ ( Base ‘ 𝐺 ) )
70 69 59 sseldd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
71 40 sselda ( ( 𝜑𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ∈ 𝒫 ( Base ‘ 𝐺 ) )
72 71 elpwid ( ( 𝜑𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
73 72 adantlr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
74 73 ad4antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑠 ⊆ ( Base ‘ 𝐺 ) )
75 74 64 sseldd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
76 eqid ( +g𝐺 ) = ( +g𝐺 )
77 4 22 76 10 qusadd ( ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) )
78 68 70 75 77 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ( +g𝑄 ) [ 𝑦 ] ( 𝐺 ~QG 𝑁 ) ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) )
79 67 78 eqtrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑟 ( +g𝑄 ) 𝑠 ) = [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) )
80 79 fveq2d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( 𝐽 ‘ [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) )
81 2 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
82 6 ad6antr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝑁𝐾 )
83 81 32 syl ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → 𝐺 ∈ Grp )
84 22 76 83 70 75 grpcld ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
85 1 81 3 4 5 82 68 84 ghmqusnsglem1 ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ [ ( 𝑥 ( +g𝐺 ) 𝑦 ) ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
86 22 76 11 ghmlin ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
87 81 70 75 86 syl3anc ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
88 80 85 87 3eqtrd ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
89 simpllr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
90 simpr ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽𝑠 ) = ( 𝐹𝑦 ) )
91 89 90 oveq12d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) = ( ( 𝐹𝑥 ) ( +g𝐻 ) ( 𝐹𝑦 ) ) )
92 88 91 eqtr4d ( ( ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) ∧ 𝑦𝑠 ) ∧ ( 𝐽𝑠 ) = ( 𝐹𝑦 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
93 2 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
94 6 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑁𝐾 )
95 7 ad4antr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
96 simpllr ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → 𝑠 ∈ ( Base ‘ 𝑄 ) )
97 1 93 3 4 5 94 95 96 ghmqusnsglem2 ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ∃ 𝑦𝑠 ( 𝐽𝑠 ) = ( 𝐹𝑦 ) )
98 92 97 r19.29a ( ( ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑥𝑟 ) ∧ ( 𝐽𝑟 ) = ( 𝐹𝑥 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
99 52 adantr ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ∃ 𝑥𝑟 ( 𝐽𝑟 ) = ( 𝐹𝑥 ) )
100 98 99 r19.29a ( ( ( 𝜑𝑟 ∈ ( Base ‘ 𝑄 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
101 100 anasss ( ( 𝜑 ∧ ( 𝑟 ∈ ( Base ‘ 𝑄 ) ∧ 𝑠 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝐽 ‘ ( 𝑟 ( +g𝑄 ) 𝑠 ) ) = ( ( 𝐽𝑟 ) ( +g𝐻 ) ( 𝐽𝑠 ) ) )
102 8 9 10 11 13 16 54 101 isghmd ( 𝜑𝐽 ∈ ( 𝑄 GrpHom 𝐻 ) )