| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusnsg.0 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
| 2 |
|
ghmqusnsg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 3 |
|
ghmqusnsg.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 4 |
|
ghmqusnsg.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
| 5 |
|
ghmqusnsg.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
| 6 |
|
ghmqusnsg.n |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) |
| 7 |
|
ghmqusnsg.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 8 |
|
ghmqusnsglem1.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 9 |
|
imaeq2 |
⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ( 𝐹 “ 𝑞 ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 10 |
9
|
unieqd |
⊢ ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ∪ ( 𝐹 “ 𝑞 ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 11 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑁 ) ∈ V |
| 12 |
11
|
ecelqsi |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 13 |
8 12
|
syl |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
| 14 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
| 15 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 16 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
| 17 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 19 |
14 15 16 18
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
| 20 |
13 19
|
eleqtrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( Base ‘ 𝑄 ) ) |
| 21 |
2
|
imaexd |
⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V ) |
| 22 |
21
|
uniexd |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V ) |
| 23 |
5 10 20 22
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 26 |
24 25
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 27 |
2 26
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 28 |
27
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 29 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 30 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) |
| 31 |
24 30
|
eqger |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 32 |
7 29 31
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
| 33 |
32
|
ecss |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 34 |
28 33
|
fvelimabd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 35 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 36 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 37 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 38 |
36 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐺 ∈ Grp ) |
| 39 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
| 40 |
24 37 38 39
|
grpinvcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ) |
| 41 |
33
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) ) |
| 42 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 43 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 44 |
24 42 43
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 45 |
36 40 41 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 46 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) ) |
| 47 |
6 3
|
sseqtrdi |
⊢ ( 𝜑 → 𝑁 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( ◡ 𝐹 “ { 0 } ) ) |
| 49 |
24
|
subgss |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 50 |
7 29 49
|
3syl |
⊢ ( 𝜑 → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) ) |
| 52 |
|
vex |
⊢ 𝑧 ∈ V |
| 53 |
|
elecg |
⊢ ( ( 𝑧 ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) ) |
| 54 |
52 53
|
mpan |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) ) |
| 55 |
54
|
biimpa |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) |
| 56 |
8 55
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) |
| 57 |
24 37 42 30
|
eqgval |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) ) ) |
| 58 |
57
|
biimpa |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) ) |
| 59 |
58
|
simp3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) |
| 60 |
38 51 56 59
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ 𝑁 ) |
| 61 |
48 60
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 62 |
|
fniniseg |
⊢ ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) ) |
| 63 |
62
|
biimpa |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( ◡ 𝐹 “ { 0 } ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
| 64 |
46 61 63
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) ) |
| 65 |
64
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ( +g ‘ 𝐺 ) 𝑧 ) ) = 0 ) |
| 66 |
45 65
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = 0 ) |
| 67 |
66
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) ) |
| 68 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
| 69 |
24 37 68
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 70 |
36 39 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 71 |
70
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) |
| 72 |
71
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 73 |
|
ghmgrp2 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp ) |
| 74 |
36 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐻 ∈ Grp ) |
| 75 |
36 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) ) |
| 76 |
75 39
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ) |
| 77 |
75 41
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) |
| 78 |
25 43 68
|
grpasscan1 |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 79 |
74 76 77 78
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( ( invg ‘ 𝐻 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 80 |
72 79
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) ( ( 𝐹 ‘ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) ( +g ‘ 𝐻 ) ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝐹 ‘ 𝑧 ) ) |
| 81 |
25 43 1 74 76
|
grpridd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ 𝑋 ) ( +g ‘ 𝐻 ) 0 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 82 |
67 80 81
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 84 |
35 83
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 85 |
84
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 86 |
|
fveqeq2 |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ ( 𝐹 ‘ 𝑋 ) = 𝑦 ) ) |
| 87 |
|
ecref |
⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) |
| 88 |
32 8 87
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) |
| 90 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 91 |
90
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑦 ) |
| 92 |
86 89 91
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) → ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ) |
| 93 |
85 92
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) ) |
| 94 |
|
velsn |
⊢ ( 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ↔ 𝑦 = ( 𝐹 ‘ 𝑋 ) ) |
| 95 |
93 94
|
bitr4di |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹 ‘ 𝑧 ) = 𝑦 ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 96 |
34 95
|
bitrd |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ 𝑦 ∈ { ( 𝐹 ‘ 𝑋 ) } ) ) |
| 97 |
96
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = { ( 𝐹 ‘ 𝑋 ) } ) |
| 98 |
97
|
unieqd |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ∪ { ( 𝐹 ‘ 𝑋 ) } ) |
| 99 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑋 ) ∈ V |
| 100 |
99
|
unisn |
⊢ ∪ { ( 𝐹 ‘ 𝑋 ) } = ( 𝐹 ‘ 𝑋 ) |
| 101 |
98 100
|
eqtrdi |
⊢ ( 𝜑 → ∪ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 102 |
23 101
|
eqtrd |
⊢ ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑋 ) ) |