Metamath Proof Explorer


Theorem ghmqusnsglem1

Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 = ( 0g𝐻 )
ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
ghmqusnsg.n ( 𝜑𝑁𝐾 )
ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
ghmqusnsglem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐺 ) )
Assertion ghmqusnsglem1 ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑋 ) )

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 = ( 0g𝐻 )
2 ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
5 ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 ghmqusnsg.n ( 𝜑𝑁𝐾 )
7 ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
8 ghmqusnsglem1.x ( 𝜑𝑋 ∈ ( Base ‘ 𝐺 ) )
9 imaeq2 ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ( 𝐹𝑞 ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) )
10 9 unieqd ( 𝑞 = [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) → ( 𝐹𝑞 ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) )
11 ovex ( 𝐺 ~QG 𝑁 ) ∈ V
12 11 ecelqsi ( 𝑋 ∈ ( Base ‘ 𝐺 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) )
13 8 12 syl ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) )
14 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) )
15 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
16 ovexd ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V )
17 ghmgrp1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp )
18 2 17 syl ( 𝜑𝐺 ∈ Grp )
19 14 15 16 18 qusbas ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
20 13 19 eleqtrd ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ∈ ( Base ‘ 𝑄 ) )
21 2 imaexd ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V )
22 21 uniexd ( 𝜑 ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∈ V )
23 5 10 20 22 fvmptd3 ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) )
24 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
25 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
26 24 25 ghmf ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
27 2 26 syl ( 𝜑𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
28 27 ffnd ( 𝜑𝐹 Fn ( Base ‘ 𝐺 ) )
29 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
30 eqid ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 )
31 24 30 eqger ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
32 7 29 31 3syl ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
33 32 ecss ( 𝜑 → [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ⊆ ( Base ‘ 𝐺 ) )
34 28 33 fvelimabd ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹𝑧 ) = 𝑦 ) )
35 simpr ( ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹𝑧 ) = 𝑦 ) → ( 𝐹𝑧 ) = 𝑦 )
36 2 adantr ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
37 eqid ( invg𝐺 ) = ( invg𝐺 )
38 36 17 syl ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐺 ∈ Grp )
39 8 adantr ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ∈ ( Base ‘ 𝐺 ) )
40 24 37 38 39 grpinvcld ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( invg𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) )
41 33 sselda ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑧 ∈ ( Base ‘ 𝐺 ) )
42 eqid ( +g𝐺 ) = ( +g𝐺 )
43 eqid ( +g𝐻 ) = ( +g𝐻 )
44 24 42 43 ghmlin ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ ( ( invg𝐺 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) )
45 36 40 41 44 syl3anc ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) )
46 28 adantr ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 Fn ( Base ‘ 𝐺 ) )
47 6 3 sseqtrdi ( 𝜑𝑁 ⊆ ( 𝐹 “ { 0 } ) )
48 47 adantr ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( 𝐹 “ { 0 } ) )
49 24 subgss ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) )
50 7 29 49 3syl ( 𝜑𝑁 ⊆ ( Base ‘ 𝐺 ) )
51 50 adantr ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ ( Base ‘ 𝐺 ) )
52 vex 𝑧 ∈ V
53 elecg ( ( 𝑧 ∈ V ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) )
54 52 53 mpan ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ↔ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) )
55 54 biimpa ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 )
56 8 55 sylan ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 )
57 24 37 42 30 eqgval ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ↔ ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑁 ) ) )
58 57 biimpa ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑧 ∈ ( Base ‘ 𝐺 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑁 ) )
59 58 simp3d ( ( ( 𝐺 ∈ Grp ∧ 𝑁 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑋 ( 𝐺 ~QG 𝑁 ) 𝑧 ) → ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑁 )
60 38 51 56 59 syl21anc ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑁 )
61 48 60 sseldd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( 𝐹 “ { 0 } ) )
62 fniniseg ( 𝐹 Fn ( Base ‘ 𝐺 ) → ( ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( 𝐹 “ { 0 } ) ↔ ( ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = 0 ) ) )
63 62 biimpa ( ( 𝐹 Fn ( Base ‘ 𝐺 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( 𝐹 “ { 0 } ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = 0 ) )
64 46 61 63 syl2anc ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = 0 ) )
65 64 simprd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( ( invg𝐺 ) ‘ 𝑋 ) ( +g𝐺 ) 𝑧 ) ) = 0 )
66 45 65 eqtr3d ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) = 0 )
67 66 oveq2d ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹𝑋 ) ( +g𝐻 ) 0 ) )
68 eqid ( invg𝐻 ) = ( invg𝐻 )
69 24 37 68 ghminv ( ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) = ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) )
70 36 39 69 syl2anc ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) = ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) )
71 70 oveq1d ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) = ( ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) )
72 71 oveq2d ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) = ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) )
73 ghmgrp2 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐻 ∈ Grp )
74 36 73 syl ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐻 ∈ Grp )
75 36 26 syl ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐻 ) )
76 75 39 ffvelcdmd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐻 ) )
77 75 41 ffvelcdmd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹𝑧 ) ∈ ( Base ‘ 𝐻 ) )
78 25 43 68 grpasscan1 ( ( 𝐻 ∈ Grp ∧ ( 𝐹𝑋 ) ∈ ( Base ‘ 𝐻 ) ∧ ( 𝐹𝑧 ) ∈ ( Base ‘ 𝐻 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) = ( 𝐹𝑧 ) )
79 74 76 77 78 syl3anc ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( ( invg𝐻 ) ‘ ( 𝐹𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) = ( 𝐹𝑧 ) )
80 72 79 eqtrd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) ( ( 𝐹 ‘ ( ( invg𝐺 ) ‘ 𝑋 ) ) ( +g𝐻 ) ( 𝐹𝑧 ) ) ) = ( 𝐹𝑧 ) )
81 25 43 1 74 76 grpridd ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( ( 𝐹𝑋 ) ( +g𝐻 ) 0 ) = ( 𝐹𝑋 ) )
82 67 80 81 3eqtr3d ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐹𝑧 ) = ( 𝐹𝑋 ) )
83 82 adantr ( ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹𝑧 ) = 𝑦 ) → ( 𝐹𝑧 ) = ( 𝐹𝑋 ) )
84 35 83 eqtr3d ( ( ( 𝜑𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ∧ ( 𝐹𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹𝑋 ) )
85 84 r19.29an ( ( 𝜑 ∧ ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹𝑧 ) = 𝑦 ) → 𝑦 = ( 𝐹𝑋 ) )
86 fveqeq2 ( 𝑧 = 𝑋 → ( ( 𝐹𝑧 ) = 𝑦 ↔ ( 𝐹𝑋 ) = 𝑦 ) )
87 ecref ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) )
88 32 8 87 syl2anc ( 𝜑𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) )
89 88 adantr ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → 𝑋 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) )
90 simpr ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → 𝑦 = ( 𝐹𝑋 ) )
91 90 eqcomd ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ( 𝐹𝑋 ) = 𝑦 )
92 86 89 91 rspcedvdw ( ( 𝜑𝑦 = ( 𝐹𝑋 ) ) → ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹𝑧 ) = 𝑦 )
93 85 92 impbida ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹𝑧 ) = 𝑦𝑦 = ( 𝐹𝑋 ) ) )
94 velsn ( 𝑦 ∈ { ( 𝐹𝑋 ) } ↔ 𝑦 = ( 𝐹𝑋 ) )
95 93 94 bitr4di ( 𝜑 → ( ∃ 𝑧 ∈ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ( 𝐹𝑧 ) = 𝑦𝑦 ∈ { ( 𝐹𝑋 ) } ) )
96 34 95 bitrd ( 𝜑 → ( 𝑦 ∈ ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) ↔ 𝑦 ∈ { ( 𝐹𝑋 ) } ) )
97 96 eqrdv ( 𝜑 → ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = { ( 𝐹𝑋 ) } )
98 97 unieqd ( 𝜑 ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = { ( 𝐹𝑋 ) } )
99 fvex ( 𝐹𝑋 ) ∈ V
100 99 unisn { ( 𝐹𝑋 ) } = ( 𝐹𝑋 )
101 98 100 eqtrdi ( 𝜑 ( 𝐹 “ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑋 ) )
102 23 101 eqtrd ( 𝜑 → ( 𝐽 ‘ [ 𝑋 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑋 ) )