Metamath Proof Explorer


Theorem ghmqusnsglem2

Description: Lemma for ghmqusnsg . (Contributed by Thierry Arnoux, 13-May-2025)

Ref Expression
Hypotheses ghmqusnsg.0 0 = ( 0g𝐻 )
ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
ghmqusnsg.n ( 𝜑𝑁𝐾 )
ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
ghmqusnsglem2.y ( 𝜑𝑌 ∈ ( Base ‘ 𝑄 ) )
Assertion ghmqusnsglem2 ( 𝜑 → ∃ 𝑥𝑌 ( 𝐽𝑌 ) = ( 𝐹𝑥 ) )

Proof

Step Hyp Ref Expression
1 ghmqusnsg.0 0 = ( 0g𝐻 )
2 ghmqusnsg.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusnsg.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusnsg.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) )
5 ghmqusnsg.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 ghmqusnsg.n ( 𝜑𝑁𝐾 )
7 ghmqusnsg.1 ( 𝜑𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
8 ghmqusnsglem2.y ( 𝜑𝑌 ∈ ( Base ‘ 𝑄 ) )
9 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) )
10 eqidd ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) )
11 ovexd ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V )
12 ghmgrp1 ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp )
13 2 12 syl ( 𝜑𝐺 ∈ Grp )
14 9 10 11 13 qusbas ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) )
15 8 14 eleqtrrd ( 𝜑𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) )
16 elqsg ( 𝑌 ∈ ( Base ‘ 𝑄 ) → ( 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) )
17 16 biimpa ( ( 𝑌 ∈ ( Base ‘ 𝑄 ) ∧ 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
18 8 15 17 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
19 nsgsubg ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) )
20 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
21 eqid ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 )
22 20 21 eqger ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
23 7 19 22 3syl ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
24 23 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) )
25 simplr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
26 ecref ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
27 24 25 26 syl2anc ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
28 simpr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) )
29 27 28 eleqtrrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥𝑌 )
30 28 fveq2d ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽𝑌 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) )
31 2 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
32 6 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁𝐾 )
33 7 ad2antrr ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) )
34 1 31 3 4 5 32 33 25 ghmqusnsglem1 ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹𝑥 ) )
35 30 34 eqtrd ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽𝑌 ) = ( 𝐹𝑥 ) )
36 29 35 jca ( ( ( 𝜑𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥𝑌 ∧ ( 𝐽𝑌 ) = ( 𝐹𝑥 ) ) )
37 36 expl ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥𝑌 ∧ ( 𝐽𝑌 ) = ( 𝐹𝑥 ) ) ) )
38 37 reximdv2 ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥𝑌 ( 𝐽𝑌 ) = ( 𝐹𝑥 ) ) )
39 18 38 mpd ( 𝜑 → ∃ 𝑥𝑌 ( 𝐽𝑌 ) = ( 𝐹𝑥 ) )