Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusnsg.0 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
2 |
|
ghmqusnsg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
3 |
|
ghmqusnsg.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
4 |
|
ghmqusnsg.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) |
5 |
|
ghmqusnsg.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
6 |
|
ghmqusnsg.n |
⊢ ( 𝜑 → 𝑁 ⊆ 𝐾 ) |
7 |
|
ghmqusnsg.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
8 |
|
ghmqusnsglem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝑄 ) ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝑁 ) ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
11 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) ∈ V ) |
12 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ Grp ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
14 |
9 10 11 13
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) = ( Base ‘ 𝑄 ) ) |
15 |
8 14
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) |
16 |
|
elqsg |
⊢ ( 𝑌 ∈ ( Base ‘ 𝑄 ) → ( 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
17 |
16
|
biimpa |
⊢ ( ( 𝑌 ∈ ( Base ‘ 𝑄 ) ∧ 𝑌 ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑁 ) ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
18 |
8 15 17
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
19 |
|
nsgsubg |
⊢ ( 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑁 ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
21 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑁 ) = ( 𝐺 ~QG 𝑁 ) |
22 |
20 21
|
eqger |
⊢ ( 𝑁 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
23 |
7 19 22
|
3syl |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ) |
25 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
26 |
|
ecref |
⊢ ( ( ( 𝐺 ~QG 𝑁 ) Er ( Base ‘ 𝐺 ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) |
29 |
27 28
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑥 ∈ 𝑌 ) |
30 |
28
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) ) |
31 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
32 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ⊆ 𝐾 ) |
33 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → 𝑁 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
34 |
1 31 3 4 5 32 33 25
|
ghmqusnsglem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
35 |
30 34
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |
36 |
29 35
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
37 |
36
|
expl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) ) → ( 𝑥 ∈ 𝑌 ∧ ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) ) |
38 |
37
|
reximdv2 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( Base ‘ 𝐺 ) 𝑌 = [ 𝑥 ] ( 𝐺 ~QG 𝑁 ) → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) ) |
39 |
18 38
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ( 𝐽 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑥 ) ) |