| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmsub.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
ghmsub.m |
⊢ − = ( -g ‘ 𝑆 ) |
| 3 |
|
ghmsub.n |
⊢ 𝑁 = ( -g ‘ 𝑇 ) |
| 4 |
|
ghmgrp1 |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑆 ∈ Grp ) |
| 6 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑉 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( invg ‘ 𝑆 ) = ( invg ‘ 𝑆 ) |
| 8 |
1 7
|
grpinvcl |
⊢ ( ( 𝑆 ∈ Grp ∧ 𝑉 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 9 |
5 6 8
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) |
| 12 |
1 10 11
|
ghmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 13 |
9 12
|
syld3an3 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 14 |
|
eqid |
⊢ ( invg ‘ 𝑇 ) = ( invg ‘ 𝑇 ) |
| 15 |
1 7 14
|
ghminv |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) |
| 16 |
15
|
3adant2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) = ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 18 |
13 17
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 19 |
1 10 7 2
|
grpsubval |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) = ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 21 |
20
|
3adant1 |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 𝐹 ‘ ( 𝑈 ( +g ‘ 𝑆 ) ( ( invg ‘ 𝑆 ) ‘ 𝑉 ) ) ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 23 |
1 22
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑈 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ) |
| 25 |
|
ffvelcdm |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) |
| 26 |
24 25
|
anim12dan |
⊢ ( ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 27 |
23 26
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 28 |
27
|
3impb |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) ) |
| 29 |
22 11 14 3
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( +g ‘ 𝑇 ) ( ( invg ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 31 |
18 21 30
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) 𝑁 ( 𝐹 ‘ 𝑉 ) ) ) |