Description: Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ghomf.1 | ⊢ 𝑋 = ran 𝐺 | |
ghomf.2 | ⊢ 𝑊 = ran 𝐻 | ||
Assertion | ghomf | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghomf.1 | ⊢ 𝑋 = ran 𝐺 | |
2 | ghomf.2 | ⊢ 𝑊 = ran 𝐻 | |
3 | 1 2 | elghomOLD | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) → ( 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑊 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) 𝐻 ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) ) |
4 | 3 | simprbda | ⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ 𝑊 ) |
5 | 4 | 3impa | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ 𝑊 ) |