Metamath Proof Explorer


Theorem ghomf

Description: Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses ghomf.1 𝑋 = ran 𝐺
ghomf.2 𝑊 = ran 𝐻
Assertion ghomf ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋𝑊 )

Proof

Step Hyp Ref Expression
1 ghomf.1 𝑋 = ran 𝐺
2 ghomf.2 𝑊 = ran 𝐻
3 1 2 elghomOLD ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) → ( 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ↔ ( 𝐹 : 𝑋𝑊 ∧ ∀ 𝑥𝑋𝑦𝑋 ( ( 𝐹𝑥 ) 𝐻 ( 𝐹𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 𝐺 𝑦 ) ) ) ) )
4 3 simprbda ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ) ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋𝑊 )
5 4 3impa ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋𝑊 )